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1. Simple Harmonic Motion
1.1 Free oscillation

Suppose we choose as a model oscillator the mass, m, suspended on a spring of stiffness k.
Then we are to solve Newton’s second law, force = mass× acceleration, as a differential
equation,

m
d2x

dt2
= −kx

which we write
ẍ = −ω2

0x (1)

by using two dots to indicate a second derivative with respect to time. We will use one
dot to indicate the first derivative. We have also combined the two constants, m, the
mass and k, the spring constant, to define an angular frequency,

ω2
0 =

k

m

We’re not mathematicians, we just want a solution of this thing; so try x = Aest. Then
by simple differentiating, we have

x = Aest ; ẋ = sAest ; ẍ = s2Aest

We only have to put this back into (1) to see that

s2Aest + ω2
0Ae

st = 0 −→ s2 + ω2
0 = 0 −→ s = ±iω0

So we have two solutions:

x = Aeiω0t and x = Ae−iω0t

The theory of second order, linear differential equations tells us that the most general
solution is a linear combination of the two solutions with two arbitrary coefficients, that
we will call A1 and A2:

x = A1e
iω0t + A2e

−iω0t

= (A1 + A2) cosω0t+ i(A1 − A2) sinω0t

= A cosω0t+B sinω0t (a)

= C cosφ sinω0t+ C sinφ cosω0t (b)

= C sin(ω0t+ φ)

In going from line (a) to line (b) I have changed from the variables A and B to variables
C and φ by making these two definitions,

A = C sinφ and B = C cosφ

because then I can use the usual formula for sin(a+ b) to arrive at the last line.
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Now what we have is
x = C sin(ω0t+ φ)

ẋ = v = Cω0 cos(ω0t+ φ)

To fix the, up to now arbitrary, constants requires us to know “boundary conditions.”
Let’s suppose that at t = 0, x = x0, say, and v = v0, the initial velocity. These conditions
give,

x0 = C sinφ , sinφ =
x0
C

(c)

v0 = Cω0 cosφ , cosφ =
v0
Cω0

(d)

Now, square and add (c) and (d),

C =

√
x20 +

v20
ω2
0

and divide (c) by (d)

φ = arctan
x0ω0

v0

Finally, if we start off the oscillator at t = 0 with v0 = 0 and x = xm, for example we
pull out the spring to maximum deflection, xm, hold it still (v0 = 0) and let it go; then
the solution is

x = xm sin(ω0t+
1

2
π) = xm cos(ω0t)

1.2 Damping

To the differential equation (1), which is after all Newton’s second law—force equals
mass times acceleration—we add an additional force, −bẋ; b is called the “damping
coefficient”. This force is proportional to the velocity, which is what you’d expect. Try
swimming in syrup: the faster you swim the bigger is the drag, or viscous, force. So
now we need to solve the differential equation

mẍ+ bẋ+ kx = 0

which we re-write as

ẍ+
b

m
ẋ+ ω2

0x = 0

We define a new constant, Z, such that

b

m
= 2Zω0

is the frictional force per unit mass and unit speed. Now our differential equation is

ẍ+ 2Zω0ẋ+ ω2
0x = 0

As before we try
x = Aest ; ẋ = sAest ; ẍ = s2Aest
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and so
s2 + 2Zω0s+ ω2

0 = 0

leads to
s = ω0

(
−Z ±

√
Z2 − 1

)
(2)

and the general solution must be

x = A1e
st + A2e

−st (3)

Critical damping is defined as the condition Z = 1. For that case we define

bcrit = 2mω0 = 2
√
mk

and we give a name to Z by
b

bcrit
= Z

being called the damping factor, or damping ratio.

Underdamping is the condition Z < 1 or b < bcrit. This is usually the most interesting
case, and for which

Z2 − 1 < 0

meaning that there are two roots to (2), namely,

s1 = ω0

(
−Z + i

√
1− Z2

)
s1 = ω0

(
−Z − i

√
1− Z2

)
and the solution to (3) is

x = e−Zω0t
(
A1e

i
√

1−Z2ω0t + A2e
−i
√

1−Z2ω0t
)

We then simplify this in the same manner as for equations (a) and (b):

x = Ce−Zω0t sin
(√

1− Z2ω0t+ φ
)

= Ce−αt sin(ωDt+ φ)

where

α =
1

2

b

m
= Zω0

is called the damping constant, and

ωD = ω0

√
1− Z2 = ω0

√
1− 1

4

b2

mk
< ω0

is the damped frequency.
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Again, if at t = 0, x = xm and v = 0, the solution associated with these boundary
conditions is

x = xm e
−αt sin

(
ωDt+

1

2
π

)
= xm e

−αt cosωDt

1.3 Driven oscillators

In real life we are less interested in an oscillator that is oscillating at its natural freqency,
ω0, or its natural damped frequency, ωD, than in the behaviour of an undamped or
damped oscillator when we choose to drive it at some frequency, ω, that we choose.
Situations of this phenomenon are ubiquitous in physics and engineering. Try and write
down some half a dozen examples of your own.

3.1 Undamped driven oscillator

The oscillator is driven by a periodic force of angular frequency ω and amplitude F0.
That means we have one more force to add in to Newton’s second law, namely

F = F0 sinωt

and force = mass× acceleration now reads

mẍ = F0 sinωt− kx (4)

Eventually the oscillator has no choice but to vibrate at the frequency of the driving
force, whether it likes it or not, so we must have,

x = A sinωt

ẋ = Aω cosωt

ẍ = −Aω2 sinωt

Equation (4) now reads

−mAω2 sinωt+ kA sinωt = F0 sinωt

That is,

A =
F0

k −mω2
=

F0/k

1− ω2

ω2
0

=
As

1− ω2

ω2
0

using

ω0 =

√
k

m
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the natural frequency of the undamped oscillator. We call As the static amplitude and
we call A the dynamic amplitude; their ratio is called the magnification factor,

Ds =
A

As
=

(
1− ω2

ω2
0

)−1

If the driving frequency is less that the natural frequency the magnification factor is
positive and the displacement is in phase with the driving force. Conversely if ω > ω0,
Ds < 0. An amplitude cannot be negative, so we’ll have instead, for this case, to use
the solution

x = −A sinωt

which implies a phase difference of π (180◦) between the displacement and the driving
force. Thirdly, if ω = ω0, Ds → ∞ and we have resonance. In real life this never
happens as there is always damping. But interesting things do happen when we drive
an oscillator at a frequency close to its natural one.

3.1 Damped driven oscillator

Now we include the velocity dependent damping force into equation (4):

mẍ = F0 sinωt− bẋ− kx

or
mẍ+ bẋ+ kx = F0 sinωt (4a)

Eventually after transients have died away, the oscillator must vibrate at the frequency
of the driving force. It may not like it and it will protest unless the driving frequency is
close to the natural frequency of the undriven oscillator. Its reluctance to cooperate is
reflected in a reduction in amplitude. Nearer to resonance the amplitude is large. The
so called resonance curve or relation between amplitude and driving frequency is what
we will be seeking in the mathematical development that follows. The oscillator will
necessarily vibrate at the frequency of the driving force, but it will not necessarily be
in phase with it. Hence the solution for the amplitude must look like

x = A sin (ωt− φ)

ẋ = Aω cos (ωt− φ)

ẍ = −Aω2 sin (ωt− φ)

when I plug these into (4a) I get

m
[
−Aω2 sin (ωt− φ)

]
+ b [Aω cos (ωt− φ)] + kA sin (ωt− φ) = F0 sinωt

= F0 sin (ωt− φ+ φ)

Rearranging this I have

A
(
k −mω2

)
sin (ωt− φ) + Abω cos (ωt− φ)

= F0 [sin (ωt− φ) cosφ+ cos (ωt− φ) sinφ]
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Now, equate the coefficients of sin(ωt− φ) and cos(ωt− φ) and obtain

Abω = F0 sinφ

A
(
k −mω2

)
= F0 cosφ

We square and add these two, recalling that sin2 φ+ cos2 φ = 1,

F 2
0 = A2

[(
k −mω2

)
+ b2ω2

]
which means that we have, for the dynamic amplitude,

A =
F0√

(k −mω2)2 + b2ω2

=
F0/k√(

1− mω2

k

)2
+ b2ω2

k2

We also divide our two equations to find the phase difference, or phase angle, φ, between
the oscillator and its driving force,

tanφ =
bω

k −mω2

We can simplify the formulas for A and φ using these definitions that we have encoun-
tered already in these notes,

ω0 =

√
k

m
, b = 2mZω0 , As =

F0

k

We also define the frequency ratio,

r =
ω

ω0

Then the magnification factor is

Ds =
A

As
=

1√
(1− r2)2 + (2rZ)2

(5)

and the phase angle is

φ = arctan
2rZ

1− r2
(6)

What is the frequency, ωmax, say, that gives us the greatest amplitude? Or to put
the question another way, what is the resonant frequency? We need to minimise the
denominator in (5); we do this in the usual way by setting its first derivative with
respect to r equal to zero and solving for r which will then give us ωmax/ω0.

d

dr

[(
1− r2

)2
+ (2rZ)2

]
= 0
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leads to

ωmax = ω0

√
1− 2Z2 (7)

which is neither ω0, nor ωD = ω0

√
1− Z2.

What is the maximum ampltitude; Amax, say? Put (7) into (5) and neglect Z4 when
compared to Z2. We find

Amax

As
=

1

2Z
=
mω0

b
≈ Q

which is the “quality factor”, and using As = F0/k and ω2
0 = k/m we get

Amax =
F0

bω0

On page 9 (below) are two graphs I’ve taken from wikipedia showing a set of resonance
curves and phase angles for a driven damped oscillator. On the abscissa is plotted the
frequency ratio, r. They use the phrase “amplification ratio” for the magnification factor
and have used the symbol ζ for the damping factor, Z. The first is essentially a plot
of equation (5). In the second, note how in the case of the undamped forced oscillator
there is an abrupt change from in phase to 180◦ out of phase at r goes through one, as
we discuss on page 5 of these notes. Note how the frequency ωmax is always smaller than
the natural frequency ω0 but appears to approach it as the peak becomes narrower, that
is, the damping becomes less.

There are three interesting cases.

(i) If r � 1 the driving frequency is much smaller than the natural frequency of the
oscillator,

ω � ω0

Then the dynamic amplitude is close to the static amplitude,

A ≈ As

and the phase difference is

φ ≈ arctan 0 = 0

so the displacement and force are in phase.
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(ii) If r ≈ 1 then
ω ≈ ω0

and
A

As
≈ 1

2Z
≈ Q , the quality factor

Also,

φ ≈ arctan∞ =
1

2
π

so the displacement and force are out of phase by 90◦.

(iii) If r � 1, then ω � ω0 and therefore

A

As
∝ ω2

0

ω2
=

1

r2

which is the shape of the high frequency tail of the resonance curve. The displacement
and force are out of phase by 180◦, for the same reason as given on page 6 for the
driven undamped oscillator.
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2. The LCR circuit

We will discuss an electrical circuit called LCR which is a resistor, an inductor and a
capacitor connected in series to an AC power supply. This is a resonant circuit. First
we study the three components separately.

2.1 The R-circuit

FIGURE 1

In the circuit in figure 1, E0 is the peak e.m.f. (voltage); ω is the driving angular fre-
quency; t is time; R is the resistance in ohms. If I is the current, then

I =
E0
R

sinωt (2.1)

by Ohm’s law. The current is in phase with the voltage

FIGURE 2

2.2 The C-circuit

FIGURE 3

The capacitance is

C =
Q

V
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so the voltage is
Q

C
= E0 sinωt (2.2)

Current is

I =
dQ

dt
= CE0ω cosωt

That is

I =
E0

1/ωC
sin(ωt+

1

2
π) =

E0
XC

sin(ωt+
1

2
π)

so the current leads the voltage by a phase angle of 90◦ as shown in figure 4.

XC =
1

ωC

is called the capacitive reactance.

FIGURE 4

2.3 The L-circuit

FIGURE 5

An inductor is a coil that produces a back e.m.f. as a magnetic field is grown inside
the coil. The back e.m.f. is proportional to the rate of increase of current, the constant
of proportionality is the inductance L. The back e.m.f. is −Lİ by Lenz’s law and by
Kirchhoff’s loop law the back e.m.f. is −E , then,

E0 sinωt = L
dI

dt
(2.3)

that is,
dI

dt
=
E0
L

sinωt
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and by integration,

I = − E0
ωL

cosωt

=
E0
ωL

sin(ωt− 1

2
π)

=
E0
XL

sin(ωt− 1

2
π)

Now the voltage leads the current, or if you prefer the current trails the voltage.

FIGURE 6

and
XL = ωL

is called the inductive reactance.

2.4 The LCR circuit

FIGURE 7

We now combine equations (2.1), (2.2) and (2.3)

L
dI

dt
+RI +

Q

C
= E0 sinωt

and since

I =
dQ

dt

this is

L
d2Q

dt2
+R

dQ

dt
+
Q

C
= E0 sinωt
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or
d2Q

dt2
+
R

L

dQ

dt
+

1

CL
Q =

E0
L

sinωt

Compare this with the equation (4a), p. 5, which is the equation of motion of a driven,
damped mechanical oscillator,

d2x

dt2
+ 2Zmω0

dx

dt
+ ω2

0x =
F0

m
sinωt

In the case of the LCR circuit we will write

d2Q

dt2
+ 2Zω0

dQ

dt
+ ω2

0Q =
E0
L

sinωt

and we use the symbol Zm for the damping ratio of the mechanical device and Z for
the damping ratio of the LCR circuit.

The following table shows the correspondence between the parameters of the two devices.

damped mass and spring LCR circuit

inertial element m L

stiffness k 1/C

damping coefficient b R

damping ratio 1
2
b/
√
mk 1

2
R
√
C/L

static amplitude As F0/k E0C

quality factor Q
√
mk/b 1

R

√
L/C

natural frequency ω0

√
k/m 1/

√
LC

Amax = AsQ F0/bω0 E0/Rω0

We can use this table as a “dictionary” to translate the solution subsection 1.3 into the
physics of the present situation. There, we had

x = A sin(ωt− φ)

with
A

As
=

1√(
1− ω2

ω2
0

)2

+
(

2Zm
ω
ω0

)2
and

As =
F0

k
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For convenience in what follows, we will shift the phase and write for the time depen-
dence of the charge, Q,

Q = −A cos(ωt− φ)

This is of course just as good a solution of the differential equation for Q. The shift of
phase in our choice of solution of the differential equation does not affect the amplitude,
so we still have A/As as above, but after substituting Z for Zm and using As = E0C.
To obtain the current, we differentiate the charge with respect to time,

I =
dQ

dt
= Aω sin(ωt− φ)

= I0 sin(ωt− φ) (2.4)

with†

I0 =
ωE0C√(

1− ω2

ω2
0

)2

+
(

2Z ω
ω0

)2
and after a lot of easy algebra, and using Z = 1

2
R
√
C/L and ω0 = 1/

√
LC, this turns

into

I0 =
E0√(

ωL− 1
ωC

)2
+R2

(2.5)

The phase angle turns out to be‡

φ = arctan
ωL− 1

ωC
R

= arctan
reactance

resistance
(2.6)

in which by “reactance” I mean the the inductive reactance take away the capacitive
reactance. Now you are going to see why I have used new symbols Zm and Z for
the damping ratios (as well as Q for quality factor, so as not to confuse it with Q for
charge)—everybody writes equation (2.5) as

I0 =
E0
Z

That is, the peak current equals the peak voltage divided by, not resistance as in a
direct current circuit but, impedance. Impedance is always given the symbol Z. The
impedance of the LCR circuit, according to equation (2.5) is given by

Z2 =

(
ωL− 1

ωC

)2

+R2

† I chose the − cos solution so that we now have E = E0 sinωt and I = I0 sin(ωt− φ) and
this instantly identifies φ as the phase difference between the current and the voltage,
which we what we want to know.
‡ Compare with page 6 of these notes: after changing x = A sin(ωt − φ) into x =
−A cos(ωt − φ). In that case tanφ = (r2 − 1)/2rZm with r = ω/ω0; then use the
dictionary.
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and we remember that ωL is the inductive reactance and 1/ωC is the capacitive reac-
tance. So

Z2 = (XL −XC)2 +R2

= (reactance)2 + (resistance)2

Depending on the relative sizes of the inductive and capacitive reactances, the total
reactance may be positive or negative. We must therefore interpret Z2 as the “modulus

squared” of a complex number:†
Z∗Z = |Z|2

and

Z = R + i (XL −XC)

is called the complex impedance of the LCR circuit. We can also write this as

Z = |Z| eiφ

and plot Z in the Argand diagram

FIGURE 8

We then see that the phase is exactly as in equation (2.6), namely,

tanφ =
reactance

resistance

This is very important because we now see that however difficult the maths has been in
all this development, for whatever LCR circuit we construct once we know the resistance,
capacitance and inductance of the three elements and the driving angular frequency, ω,
of the a.c. power supply, then we can easily calculate the reactance and then with a
diagram like figure 8, we have a simple graphical construction to find the impedance and
the phase difference—that is, whether and by how much the current leads or trails the
voltage in our LCR circuit.

† We need to do this because we wish to write Z = a+ b, say, that is the sum of a reactive
part and a resistive part; while what we have is Z2 = A2 +B2, say. If Z is real, then we
have Z2 = (a+ b)2 = a2 + b2 + 2ab which is not in the form a2 + b2 so this doesn’t work.
But if Z is complex we can write Z = a+ib and then |Z|2 = (a−ib)(a+ib) = a2+b2 as we
require. So we need to insist that either the reactance or the resistance is “imaginary”.
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We now write down the oscillating e.m.f. as in figure 7,

E = E0 sinωt (2.7)

= Im E0 eiωt

in which Im means “imaginary part of”, and so the oscillating current in the LCR
circuit is

I =
E
Z

= Im
E0
|Z|

e−iφ eiωt

=
E0
|Z|

sin(ωt− φ)

= I0 sin(ωt− φ) (2.4)

which is the same as equation (2.4). This is why we wanted a “sine” solution for
the current and hence needed a “minus cosine” solution for the charge at the top of
page 5. By comparison with equation (2.7), the angle φ determines the angle by which
the current trails (or leads if φ < 0) the voltage. We can think of this as arising in
a diagram like figure 9 which provides a graphical means to find the phase relation
between voltage and current in an LCR circuit, given the values of L, R and C.

FIGURE 9

This illustrates how the phase is zero in a purely resistive circuit as in figure 2. The
phase is positive or negative depending whether the reactance is positive or negative,
or in other words, whether the inductive reactance is greater or less than the capacitive
reactance. In a purely capacitive circuit we see that φ = − 1

2
π = −90◦; and in a purely

inductive circuit we see that φ = + 1
2
π = +90◦ which is entirely consistent with figures 4

and 6.

The LCR circuit is a resonant oscillator just as is its mechanical counterpart. The
angular frequency ω0 is the natural frequency of the undamped circuit, that is a circuit
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with R = 0, so ω0 is the solution of the equation†

ωL− 1

ωC
= 0

that is,

ω0 =
1√
LC

The quality factor is

Q =
ω0L

R
=

1

R

√
L

C

and the static amplitude is As = E0C which is the charge stored in the capacitor if
the frequency is zero so that the circuit becomes a DC circuit. A circuit with a high
Q has a narrower resonance peak or “bandwidth”. This is how a radio is tuned. The
capacitance of a resonant circuit is varied until the resonant frequency matches the
frequency of the signal being sought. By exploiting a narrow resonance peak, signals at
nearby frequencies do not affect the current in the circuit.

Figure 10 shows a typical resonance and power output curve for an LCR circuit. You
should be able to identify As and Amax in the left hand graph. In the right hand
graph, ∆ω is the bandwidth. There’s a good wikipedia page on the LCR circuit
(en.wikipedia.org/wiki/RLC circuit). Note that they call it an RLC circuit. Also
in your textbooks, so when you look it up in the index, try under “R” and “C” as well
as “L”.

† The reason for this is that I am looking for the value of ω that maximises the peak
current in equation (2.5) in the absence of damping, that is, R = 0. So I need to
minimise the denominator. Actually it is smallest when it is zero. And this means
that at resonance the undamped oscillator has infinite amplitude. This is also the case
for the mass on the spring as we see in the subsection 1 of these notes. Of course in
real life there is no such thing as a totally undamped oscillator—there is always some
damping—but at resonance the amplitude can be very large in a high Q LCR circuit
(or any other oscillator with a large quality factor).
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FIGURE 10


