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Lecture 1

1.1 Gravity and mass

We begin with gravity. Two objects of masses m1 and m2, a distance r apart, attract
each other with a force whose magnitude is

F = G
m1m2

r2

The force is in newtons, [N],

1 N = 1 kg m s−2 (force = mass× acceleration)

and the universal gravitational constant is

G = 6.674× 10−11 N m2 kg−2

Actually force is a vector having magnitude and direction. We agree on a cartesian
coordinate system and then we can place mass number one at r1 and mass two at r2.
The vectors r1 and r2 then have components:

r1 = x1̂ı + y1̂ + z1̂k = (x1, y1, z1)

r2 = x2̂ı + y2̂ + z2̂k = (x2, y2, z2)

ı̂ , ̂ , and k̂ are unit vectors pointing in the agreed x, y and z directions. They have no
units (dimensions)

FIGURE 1–1
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The force acting upon mass one, m1, is directed along the vector r = r2 − r1. Vector
addition (or subtraction) means adding (or subtracting) the vector components. Thus

r = r2 − r1

implies that if r = x̂ı + ŷı + ẑk then

x = x2 − x1

y = y2 − y1

z = z2 − z1

So the force on mass one due to mass two is

F12 = G
m1m2

r2
r̂

r not in bold face or underlined, is the magnitude of r (units of length)

=

√

(x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2

r̂ is the unit vector (dimensionless)

=
1

r
r

The fact that F12 = −F21 expresses Newton’s third law—loosely: “every action has an
equal and opposite reaction”.

The gravitational force depends on the distance r like 1/r2. This is called an inverse

square law, and such forces have very special properties as we’ll see later.

If I introduce a third mass, m3, this does not modify the force already acting between
masses one and two. Therefore the force acting on mass one is now the force due to
mass two plus the force due to mass three:

Ftotal = F12 + F13

and this is a vector addition. This is very important and is called the principle of

superposition.

Because of the inverse square law we can show that the force acting on a mass m due
to a spherically symmetric object of finite size and total mass M is the same as if all
the mass of this object were concentrated at its centre. In fact we will show this when
we come to do electrostatics. For example the force due to the Earth’s gravity on an
object of mass m a small distance d above the Earth’s surface is, assuming the Earth
to be a perfectly spherically symmetric body,

Fg = G
MEm

(rE + d)2
=

GMEm

r2E
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if rE ≫ d, and rE is the radius of the Earth.

The magnitude of the force Fg is called the weight of the object having mass m. Since
the weight is proportional to the mass at a given height h above the Earth’s surface, we
can write

Fg = mg

and g is the acceleration due to gravity at the height h. At the Earth’s surface we use
g = 9.80 ms−2.

Do not confuse mass and weight. Mass is measured in kilograms [kg] and weight is in
newtons [N]. The kg is not a unit of weight despite what your greengrocer might tell

you.†

The attraction between masses one and two is an “action at a distance”. We say that
mass two sets up a gravitational field that is felt by mass one, and vice versa. The
attraction is exactly the same if the two masses are immersed in some medium.

The mass we have talked of up to now should be called gravitational mass. Newton’s first
law states that an object that is stationary in some inertial frame of reference remains
stationary in that frame unless acted upon by a force. The action of that force causes it
to accelerate, that is, to change its velocity. It is found that the amount of acceleration,
a, is proportional to the force applied; the proportionality constant is called the inertial
mass of that object:

F = ma

We don’t need to distinguish notationally between gravitational and inertial mass be-
cause for any given object they turn out to have the same numerical value in kg (or in

any other unit of mass, for example, the slug‡.) This is a deep and non trivial result.

† Actually if you buy, say, “3 kg” of apples you do actually get 3 kg of apples. This is
because you are actually getting the weight of your apples measured in a non SI unit,
the kilogram-force [kg-f]. This is defined as the force exerted on a one kg mass by the
Earth’s gravity, whereas the SI unit of force, the newton, is the force exterted on a
mass of one kg by an acceleration of 1 m s−2. Since a 3 kg mass experiences a force
of 3g in the Earth’s field you are actually buying 3 kg mass of apples. The tension in
the greengrocer’s spring balance is 3g newtons. It is best to use only SI units—always,

without exception.
‡ In the United States of America they say that a force of one pound [lb] produces an
acceleration of 1 ft s−2 on an object of mass one slug. So the pound is a unit of weight,
not mass. So when people say one pound equals 0.45 kg they really mean 0.45 kg-f.
Neither is an SI unit, so don’t use them.
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1.2 The mass on the spring

I don’t want to get bogged down with gravity and the weight of the mass, so my mass
is lying horizontally on a frictionless surface and connected to a rigid wall by an ideal
linear spring having no inertia and a stiffness k. That is, k is the the tension per unit
displacement. If the spring is stretched by an amount x, the restoring force is

F = −kx

FIGURE 1–2

At x = 0 the spring is relaxed—neither extended nor compressed. If I pull it out to
an extent x = A and let it go the force in the spring will cause it to accelerate. In the
differential calculus, we write

a =
d2x

dt2

and since F = ma, we have
d2x

dt2
= −

1

m
kx = −ω2

0x

having defined

ω2
0 =

k

m

Is this your first differential equation? The solution to

d2x

dt2
= −ω2

0x

is
x = A cos(ω0t+ φ) (1.1)

in which A, ω0 and φ are constant. If you don’t believe me go on and try it! In fact
try it anyway. You’ll need to be able to differentiate sine and cosine. Whereas ω0 is a
physical property of the system, independent of whether or how it is moving, A and φ
are arbitrary constants in the sense that any choice of these furnishes us with a solution
of the differential equation. The theory of second order differential equations states
that a solution must contain two arbitrarily variable constants. These are then later
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determined once we know a bit more about the physics of the problem, namely the
boundary conditions. This becomes a lot clearer now.

A is called the amplitude of the oscillation; it is the greatest distance the mass travels
away from x = 0.

φ is called the phase or phase angle. If I look at my watch when I release the mass and
record the time as t1 then I have:

(at t = t1 , x = A) ←− a “boundary condition”

This implies that

cos (ω0t1 + φ) = 1

and a solution of that is

ω0t1 + φ = 0

or

t1 = −
φ

ω0

Of course to make life a lot simpler I can always reset my watch to t = 0, when I
release the mass; that is to say I use a stop watch. In that case t1 = 0 and φ = 0 and
x = A cosω0t.

The phase in that sense is arbitrary; but we certainly need it if we compare two or more
oscillators, for example, whose masses have been released at different times.

Any system that is oscillating according to equation (1.1) is said to be executing simple

harmonic motion.

FIGURE 1–3
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Already in this lecture we have encountered a field and a wave!

If the position of the mass is x, then its speed or the magnitude of its velocity (we often
use “velocity” when we really mean “speed”, but it will not cause any confusion) is

v =
dx

dt
=

d

dt
[A cos (ω0t+ φ)]

= −Aω0 sin (ω0t+ φ)

so its kinetic energy is

Ekin =
1

2
mv2 =

1

2
mA2ω2

0 sin
2 (ω0t+ φ)

Potential energy is stored in the spring, and this is

Epot =
1

2
kx2 =

1

2
mω2

0x
2

=
1

2
mA2ω2

0 cos
2 (ω0t+ φ)

Since cos2 θ + sin2 θ = 1, the total energy is

Etot = Ekin + Epot

=
1

2
mA2ω2

0 =
1

2
kA2

This is constant, independent of time; which is just as well. If it weren’t then you’d be
very worried about what has happened to the Law of Conservation of Energy.

FIGURE 1–4

We say that Epot and Ekin are oscillating 180◦ out of phase. At any time they add to
give a constant Etot.

Notice that x and v are also always 180◦ out of phase.

Cosine and sine are periodic or circular functions. As you can see, x and v return to
their values at time t at a later time t + T and again at t + 2T and so on. T is called
the period of the oscillation. We must have

cos (ω0t+ nω0T ) = cosω0t
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and this can only be true if
ω0T = 2π

so

T =
2π

ω0

If T is the period (in seconds) then there are

f0 =
1

T

oscillations, or cycles, per second. f0 is called the frequency (often given the Greek
symbol ν) and has units of Hertz [Hz] or cycles per second. ω0 is hence equal to 2πf0
and is called the angular frequency. Its units are radians per second. Remember there
are 2π radians of angle in a complete circle: 360◦ = 2π radians.

In terms of the constants of the system, k and m, remembering ω2
0 = k/m, we find

T = 2π

√

m

k

f0 =
1

2π

√

k

m
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Lecture 2

Waves are everywhere in physics. We start with a disturbance called a pulse produced,
say, by jerking one end of a rope.

FIGURE 2–1

Figure 2–1 shows the height, y, of the pulse as a function of distance along the rope,
x, at two times, t1 = 0 and t2 6= 0. At time t2 the crest of the pulse has travelled to
position x = vt2 along the rope if v is the speed of the pulse.

For any time t we can write

y = y(x, t)

meaning “y is a function of both time and position along the rope”.† The graph shows
that for any time t, including t2,

y(x, t) = y(x− vt, 0)

This means that the variables x and t must appear in a special combination; if the pulse
is travelling to the right y(x, t) is a function of x− vt, that is,

y(x, t) = y(x− vt) ←− wavefunction of a right travelling pulse

and if it’s travelling to the left

y(x, t) = y(x+ vt) ←− wavefunction of a left travelling pulse

This is called the wavefunction.

† Please don’t get confused! It is usually obvious if I write, say, f(x), that I don’t mean
f × x. However if I write y(a + b) I probably mean ya + yb, but I could in principle
mean “y is a function of a + b”, so if in doubt, ask! y(x, t) is unambiguous because of
the comma.
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Now we turn from a pulse to a wave.

FIGURE 2–2

If we set our clock such that at t = 0, x = 0 and y = 0 then this is a sine wave,

y(x, 0) = A sin ax

where a is to be determined† as follows; y is again zero at x = 1

2
λ, where λ is the

distance between successive events, or wavelength. Therefore

y

(
1

2
λ, 0

)

= A sin
1

2
aλ = 0

which means that 1

2
aλ = π, that is

a =
2π

λ

We can find the time dependence of the wavefunction in the same way as for the pulse.
All this leads to

y(x, t) = A sin

(
2π

λ
(x− vt)

)

v is the speed at which a crest of the wave travels to the right. It is called the phase

velocity. If the period is T then the wave travels a distance λ in time T so

v =
λ

T
= fλ

where f is the frequency, having units of s−1 or Hz. To clear away the factor of 2π, I
can work with the angular frequency (see Lecture 1)

ω = 2πf [radians s−1]

† Here is yet another possible interpretation of y(x, t). Here it means, “knowing the
function y, evaluate it for particular values that I give you of x and t”. Don’t blame me:
this is maths! What you can blame me for is writing sin ax when I should write sin(ax);
but I don’t like needless parentheses if it seems pretty obvious what I mean. Again, if
you’re puzzled, ask—the rest of the class will thank you for it.
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and a quantity called the wavenumber

k =
2π

λ
[m−1]

(this is not a good name for it as it’s not a number, it has units of [L]−1. A better name is
“the magnitude of the wavevector”, or wavevector for short) and then the wavefunction
is

y = A sin (kx− ωt)

Or, if the wavefunction is not zero at x = 0 we can account for this by introducing a
phase angle

y = A sin (kx− ωt+ φ)

Usually for a single wave, the phase is arbitrary. If I set φ = 1

2
π then the wavefunction

is

y = A cos (kx− ωt)

because sin(θ + 1

2
π) = cos θ.

Normally some device or experiment in physics produces more than one wave at a time.
There is a superposition principle: if two or more waves exist in the same medium the
resultant wavefunction is the sum of the wavefunctions of the individual waves.

I want to examine two cases.

1. Two waves having the same frequency but different phases—interference

2. Two waves having the same phase but different frequency—beats

Case 1—interference

FIGURE 2–3
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We describe this mathematically as follows. The two wavefunctions are

y1 = A sin (kx− ωt) , phase arbitrarily set to zero

y2 = A sin (kx− ωt+ φ)

By the principle of superposition, we add the wavefunctions,

y = y1 + y2 = A [sin (kx− ωt) + sin (kx− ωt+ φ)]

Now we use the identity

sin a+ sin b = 2 cos
1

2
(a− b) sin

1

2
(a+ b)

and this leads to

y = 2A cos
1

2
φ

︸ ︷︷ ︸

amplitude

sin

(

kx− ωt+
1

2
φ

)

The wave now has an amplitude anything between zero (when, say, φ = π radians =
180◦) and 2A (when, say, φ = 0 which results in twice the original amplitude); that is,
destructive or constructive interference. The new wave has the same wavelength and
frequency as the two combining waves and its phase is now the mean of the original
phases. (We could have done this with phases φ1 and φ2 and found the new phase to
be φ = 1

2
(φ1 + φ2). Try it if you like.) What if the two amplitudes were different?

Case 2—beats

Be careful: sometimes I plot the wavefunction y against x. That means I am sketching
the waveform at some fixed time. On other occasions, such as in what comes next, I plot
y against t. That means I imagine standing in a fixed spot, x, and watching how the
wavefunction (displacement, disturbance or whatever constitutes the wave) is varying
in time.

Now we study the situation where two waves combine having the same phase and am-
plitude but different frequencies. The wavelengths are also different, but for now we are
not interested in the x-dependence so we leave it out. Also for this case it’s easier to
deal with cosines than sines, so I fix the phase of each wave to φ = 1

2
π. Then the two

waves are
y1 = A cos(2πf1t)

y2 = A cos(2πf2t)

and the superposition principle requires the combined wavefunction to be

y = A (cos 2πf1t+ cos 2πf2t)

We will use the identity

cos a+ cos b = 2 cos
1

2
(a− b) cos

1

2
(a+ b)
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which leads to

y = 2A cos

(

2π
1

2
(f1 − f2) t

)

︸ ︷︷ ︸

amplitude

cos

(

2π
1

2
(f1 + f2) t

)

We have a new wave whose whose wavefunction is proportional to

cos

(

2π
1

2
(f1 + f2) t

)

so the new frequency is the mean of the two combining frequencies.

But the amplitude also depends on time. It oscillates with a frequency that is half the
difference of the two original frequencies. So at times the amplitude is twice the original
and at other times it is zero and the waves are extinguished.

FIGURE 2–4
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The amplitude will go through a maximum whenever the cosine function is either +1 or
−1, that is twice in every period. Therefore we will observe oscillations in the amplitude
at a beat frequency of |f1 − f2|.

This is the phenomenon of beats. A good example is the sound made by two guitar
strings slighly out of tune; or two tuning forks of similar but not the same frequency.
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Lecture 3

3.1 Wavepackets

Let us return to combinations of waves having different frequencies and wavelengths.
The difference in wavelength, or spread, if many waves are combined, will be expressed
using the measure

∆k = k2 − k1

where k1 and k2 are wavenumbers (see Lecture 2, page 6)

k1 =
2π

λ1

, k2 =
2π

λ2

The difference in angular frequencies is

∆ω = ω2 − ω1

and a combination of two waves, having the same amplitude for simplicity, is

y = A cos (k1x− ω1t) + A cos (k2x− ω2t)

= 2A cos

(
1

2
∆k x− 1

2
∆ω t

)

︸ ︷︷ ︸

amplitude

cos

[
1

2
(k1 + k2) x−

1

2
(ω1 + ω2) t

]

(3.1)

Now, again, we have an amplitude that varies in both time and space, and a new
wavenumber and angular frequency each of which are the mean of those of the com-
bining waves. It is not difficult, as you can possibly see to extend this argument to the
case of a combination of many waves—but that case we will only treat qualitatively in
these notes. Indeed we can combine a large number of waves in an experiment taking
only wavenumbers between k1 and k2, hence having a spread of ∆k, and similarly an-
gular frequencies from a distribution of width ∆ω. The result is a train of localised
pulses.

FIGURE 3–1

This pulse is called a wavepacket. If I stand at a fixed point and observe the pulse going
past me, I can estimate the time it takes to do that and call this ∆t, the width in time of
the wavepacket. Now the wavepacket becomes localised in time because of destructive
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interference at the edges of the packet and constructive interference at its centre. To
achieve this condition in the most economical way, we want the number of periods of
the waves of maximum frequency, ω2/2π, in the time interval ∆t to be just one greater

than the number of periods of the waves of the minimum frequency, ω1/2π. This ensures
constructive interference in the centre of the wavepacket and destructive interference at
the edges, because if the two waves of minimum and maximum frequency are out of
phase at t = 0 they will be out of phase again at t = ∆t. You will need to draw a few
sketches to convince yourself of this.

Now the number of periods in the interval ∆t is ∆t/T = f∆t, if T is the period and f
is the frequency. So if the greatest frequency is fmax and the smallest is fmin then we
want the difference in the number of periods contained in the interval ∆t to be one and
so

fmax∆t− fmin∆t = 1 (or a larger odd integer)

which is the same as
∆t∆ω ≥ 2π

So to achieve a short pulse we require a combination of waves with a broad spread of
frequencies.

On the other hand, to achieve a narrow wavepacket in space the same argument leads
to a spread of wavelengths λmax − λmin such that

∆x

(
1

λmin

− 1

λmax

)

= 1 (or a larger odd integer)

In terms of wavenumbers, this is
∆x∆k ≥ 2π

which is called the uncertainty relation. In Heisenberg’s quantum mechanics we use
de Broglie’s relation p = h/λ between the wavelength of matter waves and their mo-
mentum p; h is the Planck constant. Our formula then becomes

∆x∆p ≥ h

which is the celebrated Heisenberg uncertainty principle.† It states that a simultaneous
measurement of a quantum particle’s position x and momentum p will lead to an un-
certainty in outcomes so that the spread in measurements of momentum ∆p times the
spread in measurements of position ∆x is such that their product cannot be smaller than

half the reduced Planck constant.† Of course this is a statistical argument, so it can only
make sense if we imagine possessing a very large number of copies of the particle and
after making the simultaneous measurements of x and p we make a statistical analysis
of the results. From that point of view ∆x and ∆p are exactly the standard deviations,

† Actually the uncertainty principle is ∆x∆p ≥ h/4π so our crude analysis based on
just the largest and smallest wavelength taken from all the waves that make up the
wavepacket overestimates the actual lower bound on ∆x∆p by a factor of order ten.
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σx and σp, arising from the statistical analysis. You will learn all this when you come
to do quantum mechanics; and at that point it may be profitable to you to come back
to these notes and appreciate that the uncertainty principle is really a consequence of
the notion of a particle as a wavepacket of matter waves. In fact having made that leap
forward, the uncertainty principle itself is just a simple result belonging to all kinds of
wave motion—quantum or classical.

3.2 Group velocity

The wavepacket does not necessarily travel at the same speed as the waves that com-
bine to produce it. The speed of an individual component of angular frequency ω and
wavenumber k is

v = λf =
ω

k

and this is usually called the phase velocity. It is the speed at which a crest is travelling.
For a single wave, y = A cos (kx− ωt), we see that the phase velocity is

v = − coefficient of the time variable

coefficient of the space variable

In the case of the wavepacket, we look at the amplitude term in equation (3.1) rather
than the wave term because we are interested in the speed of the amplitude peak. So
we write

amplitude = 2A cos

(
1

2
∆k x− 1

2
∆ω t

)

and apply the same argument to find the speed of the centre of the wavepacket. This is

vg = −
coefficient of the time variable

coefficient of the space variable
=

∆ω

∆k

In the case of a very large number of waves this becomes the derivative

vg =
dω

dk

and because in order to interfere the waves must be all of the same kind, that is the same
disturbance in the same medium, they will all have the same dependence of frequency
on wavelength, which is expressed as a dispersion relation:

ω = ω(k) ←− “ω is a function of k”

vg is called the group velocity. It may be the same as the phase velocity particularly if
the dispersion relation is linear as for example in the case of monochromatic light in a
vacuum for which ω = ck so that

dω

dk
= vg =

ω

k
= v = c , the speed of light

In quantum mechanics, a free particle of mass m has the following dispersion relation,

ω =
1

2

h̄k2

m
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where h̄ = h/2π is the reduced Planck constant. So the phase velocity is

v =
1

2

h̄k

m

while the group velocity is

vg =
dω

dk
=

h̄k

m

exactly twice the phase velocity.

Conversely for deep water waves, the group velocity is exactly half the phase velocity;
you can observe this if you look very carefully at the ripples emerging when you drop
a stone into a still pond. You will see a wave rising in the tail of the pulse, moving
through the pulse at exactly twice the speed of the pulse and increasing in amplitude
until it reaches the centre. Its amplitude then decays as it approaches the head of the
pulse where it dies away.

3.3 Damping

We turn to a new topic now, but return to an old friend, the mass on the spring. We
add some new physics, namely damping. No oscillator vibrates forever: it will always be
damped by interaction with its environment, usually by some frictional process which
generates heat and hence dissipates energy. We model this by causing the mass to
vibrate inside a viscous fluid.

FIGURE 3–2

The mass is at rest at position x = 0. We ignore gravity and there are now two forces
acting on the mass when it is displaced from equilibrium, x = 0.

1. The restoring force due to the spring. This depends linearly on the displacement x
because we have used a linear spring

Fspring = −kx

The force is always in the opposite direction to the displacement because it’s a
restoring force.
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2. The fluid exerts a force but only when the mass is moving. We suppose that the
force is linearly proportional to the velocity,

Fdamping = −bv = −bdx
dt

= −bẋ

in the opposite direction to the velocity. b is called the damping coefficient and has
units of [N s m−1] or [kg s−1].

As in Lecture 1, page 4, we try to find the displacement as a function of time by solving
Newton’s second law, force = mass× acceleration, as a differential equation.

acceleration is
d2x

dt2
= ẍ

velocity is
dx

dt
= ẋ

force is Fspring + Fdamping

So we have, putting all this together,

m
d2x

dt2
= −kx− b

dx

dt

You remember that the natural frequency of the oscillator, ω0, without the damping is
a function of the mass, m, and the spring constant, or stiffness, k.

ω0 =

√

k

m
[radian s−1]

Further, to simplify the differential equation, we define a new property of the damped
oscillator called the damping ratio. Often it is given the symbol ζ which is hard to write,
so I will use a Z. By definition

Z =
1

2

b

mω0

[dimensionless]

Our equation of motion becomes

d2x

dt2
+ 2Zω0

dx

dt
+ ω2

0x = 0 (3.2)

and please note that this is now independent of the nature of the mechanical device—it
is true for any system possessing a natural frequency and a damping ratio, for example
an electronic oscillator circuit, which is the subject of Lecture 20.

I will only tell you here about the solution of (3.2) when Z < 1: so called underdamping.
Actually it’s best first to sketch how we’d expect x to depend on t which I do in figure 3–
3. The displacement will oscillate at some frequency we will call ωD which will not be
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the natural frequency of the undamped counterpart; and we’d expect the amplitude to
decay with time as energy is dissipated.

Only trigonometric and exponential functions solve this kind of differential equation so
the amplitude must decay exponentially. In fact

x = xm e−Zω0t cosωDt

is a solution to (3.2) and the damped frequency, ωD, is always smaller than the natural
undamped frequency,

ωD = ω0

√
1− Z2

= ω0

√

1− 1

4

b2

mk

FIGURE 3–3
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The total energy of the damped oscillator is

E = kinetic energy + potential energy

=
1

2
m

(
dx

dt

)2

+
1

2
kx2 =

1

2
mẋ2 +

1

2
mω2

0x
2 (3.3)

You can see how neat it is to use the notation that a “dot” over a quantity indicates
a derivative with respect to time. Now, if I take equation (3.2) and write it using the
overdot notation for first and second time derivatives it looks like this.

ẍ+ 2Zω0ẋ+ ω2
0x = 0

I multiply through by mẋ and get

mẋẍ+mω2
0 ẋx = −2Zω0mẋ2 (3.4)

If I differentiate equation (3.3) and compare the result with equation (3.4) I see that

dE

dt
= mẍẋ+mω2

0 ẋx = −2ω0Zmẋ2

= −2Zω0 × 2× (kinetic energy) (3.5)

The rate at which the damped oscillator loses energy is proportional to its instantaneous
kinetic energy.

3.4 The energy of a weakly damped oscillator

I now have to restrict myself to the case of very weak damping, that is, weak enough
that it makes sense to average the total energy over a large number of cycles during
which time the amplitude decays only by an insignificant amount. In that case there is
always a well-defined average total energy,

Ē = average kinetic energy + average potential energy

I now appeal to the virial theorem† which states in the case of the harmonic oscillator
for which n = 2

average kinetic energy = average potential energy

and I can use equation (3.5) to write

dĒ

dt
= −2Zω0Ē

† Roughly stated, if the potential energy of a system depends on its coordinate like xn

then the average kinetic energy is equal to n/2 times the average potential energy. In
this case we are abusing the virial theorem because we neglect the damping force in
comparison with the spring force. The damping force does not vary like xn; indeed it
is not even a conservative force in that it cannot be obtained as the gradient of any
potential energy—it is in fact dependent on the mass’s speed, ẋ.
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which leads to
Ē = E0e

−2Zω0t

This means that the energy is dissipated (into heating up the viscous medium) at a
rate such that the energy is reduced by an amount e in a time τ = 1/2Zω0 We would
normally call τ the time constant of this process.

Over one period of oscillation the amount of energy dissipated is

∆Ē = −dĒ

dt
× period

The period is 2π/ωD and so

∆Ē = 2Zω0

2π

ωD

Ē

We call the quantity
∆Ē

Ē
= S

the specific damping capacity. Clearly

S = 4πZ
ω0

ωD

≈ 4πZ

The quality factor, Q, is defined to be

Q = 2π
the total energy

energy dissipated over the next cycle

=
2π

S
=

1

2

1

Z

ωD

ω0

≈ 1

2Z

The logarithmic decrement, δ, is defined to be

δ = ln (ratio of amplitudes of successive cycles)

If a peak occurs at t1 with a displacement x1 and the next peak occurs at t2 with
displacement x2 then

x1

x2

=
xm e−Zω0t1 cosωDt1
xm e−Zω0t2 cosωDt2

but

t2 = t1 +
2π

ωD

, the period

so
cosωDt2 = cos (ωDt1 + 2π) = cosωDt1

and therefore
x1

x2

= e2πZω0/ωD

and finally

δ = ln
x1

x2

= 2πZ
ω0

ωD

=
1

2
S ≈ 2πZ
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I have defined for you a whole bunch of parameters belonging to a damped oscillator.
These are

— the natural frequency, ω0

— the damped frequency, ωD

— the damping coefficient, b

— the damping ratio, Z

— the specific damping capacity, S

— the quality factor, Q

— the logarithmic decrement, δ

It will be useful now, for revision purposes, but more importantly for general reference
since the damped oscillator is ubiquitous in physics and engineering, to write a table of
these for yourself showing their units and the relations between them. Use the approx-
imate relations I have given as these are correct in as much as for most usual systems
ωD ≈ ω0.

Be warned, some authors, especially treating mechanical systems such as viscoelasticity
and internal friction use a captial ∆ for the logarithmic decrement. It gets worse because
they then use a lower case δ for a different but related quantity. If the damping is small
they write

“∆ = π tan δ”

and tan δ is called the loss tangent, the word “loss” referring to energy loss through
dissipation. Loss tangent is also a widely used material property of semiconductors and
dielectrics.

As a first year student and going on into higher level study you have to come to terms
with the fact that there is no agreed choice of symbols among physicists for physical
quantities (except possibly x for position and t for time—but many use q for position!)
Even worse, there is no agreement over choice of units and this makes electrodynamics
particularly troublesome; but on that subject my advice is use only SI units, always.
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Lecture 4

4.1 Resonance

The damped oscillator will eventually come to rest and is of little interest except in the
study of transients and in the establishment of system parameters, as we did in Lecture 3.
Of much greater interest is the forced, or driven, oscillator. Here you take a damped or
free oscillator with a natural frequency ω0 and you force it to vibrate with a frequency
ω. As ω approaches ω0 resonance is reached; and this is a ubiquitous phenomenon in
both physics and engineering. Examples are nuclear magnetic resonance and magnetic
resonance imaging; Raman spectroscopy; infra-red spectroscopy; a.c. dielectric loss in
capacitors; tuning of electronic circuits; microwave absorption; Mössbauer spectroscopy.

We now add a third force to Fspring and Fdamping, namely an oscillating driving force,

Fdriven = F0 sinωt

After transient effects have died away the oscillator must be vibrating at the driven
frequency ω and may or may not be in phase with the driving force. Our task is
to determine the amplitude of the final steady state and its phase. We might guess
that the closer is the driven frequency to the natural frequency the greater will be the
amplitude—think of the opera singer and the wine glass. It may be easier to see by
examining a counter example: try pushing someone on a swing at a different frequency
to the natural one; you’ll be pushing when she’s swinging back and you’ll prevent her
from swinging—her amplitude will suffer. But push in time to her swinging and she’ll
swing ever higher!

The differential equation that we’ll need to solve is again Newton’s second law,

mass× acceleration = Fspring + Fdamping + Fdriven

That is,

m
d2x

dt2
= F0 sinωt− b

dx

dt
− kx

or, by comparison with equation (3.2), Lecture 3,

d2x

dt2
+ 2Zω0

dx

dt
+ ω2

0x =
F0

m
sinωt

in which the left hand side is expressed only in terms of the natural frequency of the
oscillator ω0 and the damping ratio,

Z =
1

2

b

mω0

A solution is†
x = A sin (ωt− φ)

† Here and in Lecture 3, I am stating the solutions without proof. To some of you this
will be unsatisfactory and for your benefit I have prepared a detailed set of notes giving
a full mathematical treatment of the general forced damped oscillator and the problem
of resonance. These notes are available to you online at KEATS.
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A is called the dynamic amplitude and is given by

A = As

1
√

(

1− ω2

ω2
0

)2

+
(

2Z ω
ω0

)2

(4.1)

in which As is the so called static amplitude,

As =
F0

k

The static amplitude is the amount of extension of the spring produced by the amplitude
of the driving force, F0. The phase difference between the oscillator and the driving force
is

φ = arctan
2Z ω

ω0

1− ω2

ω2
0

That all gets put together into a resonance curve.

FIGURE 4–1

The maximum amplitude, Amax, is found by finding the frequency that makes the de-
nominator in (4.1) the smallest. By the usual means (that is, differentiate with respect
to ω and set that to zero) we find

ωmax = ω0

√
1− 2Z2

and putting this back into (4.1) we get

Amax = As

mω0

b
=

F0

bω0
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It is important to understand that the resonant frequency of the driven, damped oscilla-
tor is neither the natural frequency ω0 nor the damped frequency ωD, which we defined
in Lecture 3, page 6. In fact there are three frequencies belonging to the underdamped
resonance problem, these are,

ω0 > ωD = ω0

√
1− Z2 > ωmax = ω0

√
1− 2Z2

Now
Amax

As

=
1

2Z
=

mω0

b
= Q

is the quality factor of the oscillator (see Lecture 3, page 7). It is a property of the
damped oscillator and does not depend on the driving force, Fdriven, or the driving
frequency, ω.

4.2 The Hertzian dipole

We now study what is perhaps the most important and commonly occuring oscillator
in physics. I think that I can safely say that the origin of all electromagnetic radiation
is the wiggling of little charges, usually electrons. To look at this in detail requires
advanced physics, so I will just show you the qualitative features and I’ll call upon a
few concepts that you don’t come to until later in the course. I will also have to give
you some mathematical formulas without proof; but everything can be found in the
textbook by Griffiths, which is on your reading list.

Consider, first, the object sketched in figure 4–2; it is an electric dipole (see Lecture 8)

FIGURE 4–2

Two equal and opposite charges are separated by a conducting wire of length d. The
magnitudes of the charges are varying sinusoidally in time in such a way that the total
charge on the object is always zero.

q(t) = q0 sinωt

and as the charges change from positive to negative a current flows up and down the
wire as sketched in figure 4–3.

The dipole emits electromagnetic radiation of frequency f = ω/2π and wavelength
λ = c/f where c is the speed of light. To illustrate in more detail, the radiation is
emitted in the geometry shown in figure 4–4.
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FIGURE 4–3

FIGURE 4–4
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FIGURE 4–5

The dipole has electric dipole moment vector p = qd, and along a vector direction r̂

having polar and azimuthal angles θ and ϕ radiation is emitted having a Poynting vector
S. This vector is defined as

S =
1

µ0

E×B

Here, µ0 = 4π × 107 N amp−1 is a fundamental constant (see Lecture 15); E is the
electric field vector (see Lecture 8) and B is the magnetic field vector (see Lecture 14).
These fields are at right angles to each other and in phase. This is electromagnetic

radiation.

The total power emitted by the dipole is

W =
1

4πǫ0

1

3

p20ω
4

c3
[J s−1]

where p0 = q0d and

µ0ǫ0 =
1

c2

Note how the power varies as the fourth power of the frequency, that is, the inverse
fourth power of the wavelength of the radiation This “fourth power law” also crops up
in Rutherford and Rayleigh scattering and lies at the heart of the explanation of why
the sky is blue.

When constructed on a large scale this is an antenna. For example a half-wave antenna
looks like figure 4–6.
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FIGURE 4–6

The flux of radiant energy at point P at which r ≫ λ is

S =
1

4πǫ0

1

2πc

I20
r2

cos2
(

1
2
cos θ

)

sin2 θ

The power output is
W = 73.1 I2rms [watt]

where Irms is the root mean square of the a.c. current.

An object which is similar to the “antenna” dipole that I have described is the Hertzian
dipole, named after Heinrich Hertz (who gave his name to the unit of frequency) and
studied by Sir Joseph Larmor in 1897. In this dipole the equal and opposite charges are
fixed, but the upper charge is wiggling up and down as if the two charges were connected
by a linear spring.

FIGURE 4–7

The power radiated by the Hertzian dipole is

W =
1

4πǫ0

2

3

q2a2

c3
=

µ0

4π

2

3

q2a2

c
in S.I. units [watt]

(

Larmor actually wrote W =
2

3

q2a2

c
in magnetic c.g.s. units

)
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Here, a is the acceleration of the moving charge. After averaging over one cycle, it turns
out that the power radiated is the same for the “antenna” and the Hertzian dipole.
Therefore the Larmor radiation formula is really very general.
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4CCP1501 Simple Harmonic Motion

1. Free oscillation

We are to solve Newton’s second law, force = mass × acceleration, as a differential
equation,

m
d2x

dt2
= −kx

which we write

ẍ = −ω2

0
x (1)

by using two dots to indicate a second derivative with respect to time. We will use one
dot to indicate the first derivative. We have also combined the two constants, m, the
mass and k, the spring constant, to define an angular frequency,

ω2

0
=

k

m

We’re not mathematicians, we just want a solution of this thing; so try x = Aest. Then
by simple differentiating, we have

x = Aest ; ẋ = sAest ; ẍ = s2Aest

We only have to put this back into (1) to see that

s2Aest + ω2

0
Aest = 0 −→ s2 + ω2

0
= 0 −→ s = ±iω0

So we have two solutions:

x = Aeiω0t and x = Ae−iω0t

The theory of second order, linear differential equations tells us that the most general
solution is a linear combination of the two solutions with two arbitrary coefficients, that
we will call A1 and A2:

x = A1e
iω0t + A2e

−iω0t

= (A1 + A2) cosω0t+ i(A1 − A2) sinω0t

= A cosω0t+B sinω0t (a)

= C cosφ sinω0t+ C sinφ cosω0t (b)

= C sin(ω0t+ φ)

In going from line (a) to line (b) I have changed from the variables A and B to variables
C and φ by making these two definitions,

A = C sinφ and B = C cosφ

because then I can use the usual formula for sin(a+ b) to arrive at the last line.
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Now what we have is
x = C sin(ω0t+ φ)

ẋ = v = Cω0 cos(ω0t+ φ)

To fix the, up to now arbitrary, constants requires us to know “boundary conditions.”
Let’s suppose that at t = 0, x = x0, say, and v = v0, the initial velocity. These conditions
give,

x0 = C sinφ , sinφ =
x0

C
(c)

v0 = Cω0 cosφ , cosφ =
v0
Cω0

(d)

Now, square and add (c) and (d),

C =

√

x2

0
+

v2
0

ω2

0

and divide (c) by (d)

φ = arctan
x0ω0

v0

Finally, if we start off the oscillator at t = 0 with v0 = 0 and x = xm, for example we
pull out the spring to maximum deflection, xm, hold it still (v0 = 0) and let it go; then
the solution is

x = xm sin(ω0t+
1

2
π) = xm cos(ω0t)

2. Damping

To the differential equation (1), which is after all Newton’s second law—force equals
mass times acceleration—we add an additional force, −bẋ. This force is proportional

to the velocity, which is what you’d expect. Try swimming in syrup: the faster you
swim the bigger is the drag, or viscous, force. So now we need to solve the differential
equation

mẍ+ bẋ+ kx = 0

which we re-write as

ẍ+
b

m
ẋ+ ω2

0
x = 0

We define a new constant, Z, such that

b

m
= 2Zω0

is the frictional force per unit mass and unit speed. Now our differential equation is

ẍ+ 2Zω0ẋ+ ω2

0
x = 0

As before we try
x = Aest ; ẋ = sAest ; ẍ = s2Aest
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and so
s2 + 2Zω0s+ ω2

0
= 0

leads to
s = ω0

(

−Z ±
√
Z2 − 1

)

(2)

and the general solution must be

x = A1e
st + A2e

−st (3)

Critial damping is defined as the condition Z = 1. For that case we define

bcrit = 2mω0 = 2
√
mk

and we give a name to Z by
b

bcrit
= Z

being called the damping factor, or damping ratio.

Underdamping is the condition Z < 1 or b < bcrit. This is usually the most interesting
case, and for which

Z2 − 1 < 0

meaning that there are two roots to (2), namely,

s1 = ω0

(

−Z + i
√
1− Z2

)

s1 = ω0

(

−Z − i
√
1− Z2

)

and then (3) is

x = e−Zω0t

(

A1e
i

√
1−Z2ω0t + A2e

−i

√
1−Z2ω0t

)

We then simplify this in the same manner as for equations (a) and (b):

x = Ce−Zω0t sin
(√

1− Z2ω0t+ φ
)

= Ce−αt sin(ωDt+ φ)

where

α =
1

2

b

m
= Zω0

is called the damping constant, and

ωD = ω0

√
1− Z2 = ω0

√

1−
1

4

b2

mk
< ω0

is the damped frequency.
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Again, if at t = 0, x = xm and v = 0, the solution associated with these boundary
conditions is

x = xm e−αt sin

(

ωDt+
1

2
π

)

= xm e−αt cosωDt

which is the result I give you on page 6 of Lecture 3.

3. Driven oscillators

In real life we are less interested in an oscillator that is oscillating at its natural frequency,
ω0, or its natural damped frequency, ωD, than in the behaviour of an undamped or
damped oscillator when we choose to drive it at some frequency, ω, that we choose.
Situations of this phenomenon are ubiquitous in physics and engineering. Try and write
down some half a dozen examples of your own.

3.1 Undamped driven oscillator

The oscillator is driven by a periodic force of angular frequency ω and amplitude F0.
That means we have one more force to add in to Newton’s second law, namely

F = F0 sinωt

and force = mass× acceleration now reads

mẍ = F0 sinωt− kx (4)

Eventually the oscillator has no choice but to vibrate at the frequency of the driving
force, whether it likes it or not, so we must have,

x = A sinωt

ẋ = Aω cosωt

ẍ = −Aω2 sinωt

Equation (4) now reads

−mAω2 sinωt+ kA sinωt = F0 sinωt

That is,

A =
F0

k −mω2
=

F0/k

1− ω2

ω2

0

=
As

1− ω2

ω2

0

using

ω0 =

√

k

m
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the natural frequency of the undamped oscillator. We call As the static amplitude and
we call A the dynamic amplitude; their ratio is called the magnification factor,

Ds =
A

As

=

(

1−
ω2

ω2

0

)

−1

If the driving frequency is less that the natural frequency the magnification factor is
positive and the displacement is in phase with the driving force. Conversely if ω > ω0,
Ds < 0. An amplitude cannot be negative, so we’ll have instead, for this case, to use
the solution

x = −A sinωt

which implies a phase difference of π (180◦) between the displacement and the driving
force. Thirdly, if ω = ω0, Ds → ∞ and we have resonance. In real life this never
happens as there is always damping. But interesting things do happen when we drive
an oscillator at a frequency close to its natural one.

3.1 Damped driven oscillator

Now we include the velocity dependent damping force into equation (4):

mẍ = F0 sinωt− bẋ− kx

or
mẍ+ bẋ+ kx = F0 sinωt (4a)

Eventually after transients have died away, the oscillator must vibrate at the frequency
of the driving force. It may not like it and it will protest unless the driving frequency is
close to the natural frequency of the undriven oscillator. Its reluctance to cooperate is
reflected in a reduction in amplitude. Nearer to resonance the amplitude is large. The
so called resonance curve or relation between amplitude and driving frequency is what
we will be seeking in the mathematical development that follows. The oscillator will
necessarily vibrate at the frequency of the driving force, but it will not necessarily be
in phase with it. Hence the solution for the amplitude must look like

x = A sin (ωt− φ)

ẋ = Aω cos (ωt− φ)

ẍ = −Aω2 sin (ωt− φ)

when I plug these into (4a) I get

m
[

−Aω2 sin (ωt− φ)
]

+ b [Aω cos (ωt− φ)] + kA sin (ωt− φ) = F0 sinωt

= F0 sin (ωt− φ+ φ)

Rearranging this I have

A
(

k −mω2
)

sin (ωt− φ) + Abω cos (ωt− φ)

= F0 [sin (ωt− φ) cosφ+ cos (ωt− φ) sinφ]
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Now, equate the coefficients of sin(ωt− φ) and cos(ωt− φ) and obtain

Abω = F0 sinφ

A
(

k −mω2
)

= F0 cosφ

We square and add these two, recalling that sin2 φ+ cos2 φ = 1,

F 2

0
= A2

[(

k − ω2
)

+ b2ω2
]

which means that we have, for the dynamic amplitude,

A =
F0

√

(k −mω2)2 + b2ω2

=
F0/k

√

(

1− mω2

k

)2

+ b2ω2

k2

We also divide our two equations to find the phase difference, or phase angle, φ, between
the oscillator and its driving force,

tanφ =
bω

k −mω2

We can simplify the formulas for A and φ using these definitions that we have encoun-
tered already in these notes,

ω0 =

√

k

m
, b = 2mZω0 , As =

F0

k

We also define the frequency ratio,

r =
ω

ω0

Then the magnification factor is

Ds =
A

As

=
1

√

(1− r2)2 + (2rZ)2
(5)

and the phase angle is

φ = arctan
2rZ

1− r2
(6)

What is the frequency, ωmax, say, that gives us the greatest amplitude? Or to put
the question another way, what is the resonant frequency? We need to minimise the
denominator in (5); we do this in the usual way by setting its first derivative with
respect to r equal to zero and solving for r which will then give us ωmax/ω0.

d

dr

[

(

1− r2
)2

+ (2rZ)2
]

= 0
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leads to

ωmax = ω0

√
1− 2Z2 (7)

which is neither ω0, nor ωD = ω0

√
1− Z2.

What is the maximum ampltitude; Amax, say? Put (7) into (5) and neglect Z4 when
compared to Z2. We find

Amax

As

=
1

2Z
=

mω0

b
≈ Q

which is the “quality factor”, and using As = F0/k and ω2

0
= k/m we get

Amax =
F0

bω0

On page 9 (below) are two graphs I’ve taken from wikipedia showing a set of resonance
curves and phase angles for a driven damped oscillator. On the abscissa is plotted the
frequency ratio, r. They use the phrase “amplification ratio” for the magnification factor
and have used the symbol ζ for the damping factor, Z. The first is essentially a plot
of equation (5). In the second, note how in the case of the undamped forced oscillator
there is an abrupt change from in phase to 180◦ out of phase as r goes through one, as
we discuss on page 5 of these notes. Note how the frequency ωmax is always smaller than
the natural frequency ω0 but appears to approach it as the peak becomes narrower, that
is, the damping becomes less.

There are three interesting cases.

(i) If r ≪ 1 the driving frequency is much smaller than the natural frequency of the
oscillator,

ω ≪ ω0

Then the dynamic amplitude is close to the static amplitude,

A ≈ As

and the phase difference is

φ ≈ arctan 0 = 0

so the displacement and force are in phase.
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(ii) If r ≈ 1 then
ω ≈ ω0

and
A

As

≈
1

2Z
≈ Q , the quality factor

Also,

φ ≈ arctan∞ =
1

2
π

so the displacement and force are out of phase by 90◦.

(iii) If r ≫ 1, then ω ≫ ω0 and therefore

A

As

∝
ω2

0

ω2
=

1

r2

which is the shape of the high frequency tail of the resonance curve. The displacement
and force are out of phase by 180◦, for the same reason as given on page 6 for the
driven undamped oscillator.
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Lecture 5

5.1 Huygens’s principle

You’ve seen in outline what an electromagnetic wave really is: electric and magnetic
fields oscillating in the vacuum in phase and propagating with a phase velocity c. Optics
is all about how light behaves in various media. The geometric optics is fine if the objects
we deal with are much larger than the wavelength of the radiation (about 5/1000 mm in
the case of yellow light). But ray optics cannot describe diffraction (light going around
corners) and interference. For that, we use wave optics. This is also an idealisation—
to get some proper insight, read QED—The Strange Theory of Light and Matter, by
Richard Feynman.

We’ll start with Huygens’s principle. Light does not travel in rays. Light propagates as
a wavefront. Every point acts as a source of spherical waves. For a plane wavefront this
looks like this.

FIGURE 5–1

I’ve only drawn three point sources; there is actually an infinity of them. In the case of
a spherical wavefront, I can draw this.

FIGURE 5–2

Again I only draw a few out of the infinity of new fronts. You can then see how light
can diffract at a sharp edge.
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FIGURE 5–3

You can use Huygens’s principle to derive the laws of reflection and refraction, but I
won’t do that here—you can find it in your textbook.

5.2 Young’s slits

We consider a plane wave front of monochromatic light falling onto two closely spaces
narrow slits. Because of Huygens’s principle the light diffracts around the slits. If the
apparatus is on a large scale, we get a situation described in ray optics:

FIGURE 5–4

But in wave optics, which applies if the width and separation of the slits is on the same
length scale as the wavelength of the light, there is diffraction, like this,
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FIGURE 5–5

and there will appear a pattern on the detector screen of not just two spots a distance d
apart as in figure 5–4, but an interference pattern. We choose a point P at the detector
and ask, what will be the intensity of the light? Or, equivalently, do the light waves
arriving at P interfere constructively or destructively? It is a matter in all of these
problems of interference and diffraction to find the path difference between two waves.
If this path difference is an odd multiple of 1

2
λ then the waves are 1

2
π (180◦) out of phase

and there is destructive interference. But if the path difference is any integer multiple of
λ, say mλ. then there is maximum constructive interference and the image is brightest.
We calculate the path difference as in figures 5–6 and 5–7.
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You can see from the figure that the path difference is

∆L = r1 − r2 = d sin θ

so we have maxima in the light intensity on the detector screen when

d sin θ = mλ , m = 0, 1, 2 . . . ←− bright

and darkness when

d sin θ =

(

m+
1

2

)

λ , m = 0, 1, 2 . . . ←− dark

FIGURE 5–6

FIGURE 5–7
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We can calculate the intensity of the image on the screen because it is proportional to
the amplitude squared. Which amplitude, the electric or the magnetic field strength?
It doesn’t matter. Let’s write the wavefunction as

E = E0 sinωt

in which E is the magnitude of the electric field. Now at any point on the screen two
waves will combine to form an image and their phases will differ by an amount depending
on their path difference. Now a path difference of zero corresponds to a phase difference
of zero, and a path difference of λ results in a phase difference of 2π. Both are conditions
for maximum constructive interference and we can interpolate between these two cases
and expect to find this very useful relation between path difference and phase difference

∆L

λ
=

φ

2π
in the range [0, 1]

If the two combining waves are

E1 = E0 sinωt and E2 = E0 sin (ωt+ φ)

we use the superposition principle to add the wavefunctions to find the total electric
field strength when our two waves combine at point P on the screen. We get

E (at point P ) = E1 + E2

= E0 (sinωt+ sin (ωt+ φ))

and use the identity

sin a+ sin b = 2 sin
1

2
(a+ b) cos

1

2
(a− b)

and so the combined wavefunction is

E = 2E0 cos
1

2
φ sin

(

ωt+
1

2
φ

)

The intensity is proportional to the square of this.

I ∝ E2 = 4E2

0
cos2

1

2
φ sin2

(

ωt+
1

2
φ

)

We want to average this over one cycle which is effectively what the detector does, and
the average of sin2 (anything) is one half. So if I0 is the intensity from a single wave, for
example when one of the slits is covered, then we end up with

I = 4I0 cos2
1

2
φ
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But we have from above that

φ =
2π

λ
∆L

=
2π

λ
d sin θ

≈

2π

λ
dθ

=
2π

λ
d
y

D

if θ is small. That leads to

I = Imax cos2
(

1

2

2π

λ

yd

D

)

(5.1)

where Imax is the maximum intensity. The most important lesson from this is that to find
the intensity, first add the wavefunctions contributing via the principle of superposition
and then square them. This rule carries over into quantum mechanics: the wavefunction
is called the probability amplitude and so long as there is no way of knowing which
slit a particular particle goes through, then matter waves will interfere and by adding
the probability amplitudes, which are generally complex numbers, and then taking the
absolute value of the square, the probability is obtained for particles to be detected at
point P . If you really want to know how this all works, even at this early stage of your
education, you could do a lot worse than to read QED—The Strange Theory of Light

and Matter, by Richard Feynman. But prepare to be shocked.
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Lecture 6

6.1 Lloyd’s mirror

Another interference experiment is Lloyd’s mirror.

FIGURE 6–1

Light from the monochromatic source S reaches the point P on the screen or detector
via a direct path and a reflected path. You can see that the reflected path is equivalent
to the light having come from a virtual source S ′ so you’d expect to see the same pattern
as from Young’s slits. You do; but the contrast is reversed: so at the point directly ahead
of the two “slits” one sees a dark, not a bright, fringe. So whereas the two paths have
the same length the beams are nevertheless 180◦ out of phase. The reason for this is
that when a light wave is reflected from the surface of a material with higher refractive
index than the medium in which the light is propagating its phase is changed by exactly
180◦. I cannot prove that to you here; you will have to wait until you have studied
electrodynamics.

But you have learned an important principle: light in a medium, when reflected by a
medium having higher refractive index is shifted in phase by an angle of π (180◦). That
is, cosine becomes minus cosine, sine becomes minus sine. Refraction never produces a
change of phase.

6.2 Thin film interference

We consider light impinging on a film at right angles so it is reflected back the way it
came. To illustrate this we draw slightly oblique rays in figure 6–2.

The wavelength in air is, say, λ and this is shortened in the medium of the film to

λn = λ/n2

The path difference between rays 1 and 2 is 2L so these will be out of phase by 180◦

due to this path difference if

2L =

(

m+
1

2

)

λn , m = 1, 2 . . . ←−
constructive interference

(see below)



4CCP1501 Lecture 6 Page 2 of 9 (4 October 2017)

but ray 1 is shifted by 180◦ with respect to ray 2 because of its reflection by the the top
surface of the film, which has a higher refractive index than air and this is a condition for
constructive interference since the total phase shift is 2π. The condition for destructive
interference is

2L = mλn , m = 1, 2 . . . ←− destructive interference

=
mλ

n2

FIGURE 6–2

Of course you are very familiar with thin film interference from oil films, soap bubbles,
hummingbird feathers and so on. Two special cases are,

1. Anti-reflection coatings of a certain thickness can be applied to glass so that at
least for one range of wavelengths the path difference is such that rays 1 and 2
interfere destructively and very little light is reflected. This is why some lenses have
a faint colour in their reflected light; that is the wavelength at which the destructive
interference is least effective.

2. If films are very much thinner than the wavelength they appear black under reflected
light. This is because the path difference is effectively zero and so because of the
phase change of ray 1, rays 1 and 2 are out of phase by π and so interfere destructively.

Newton’s rings are formed when a half-convex lens is balanced on a flat sheet of glass
and viewed from above.

The air between the lens and the glass sheet is effectively a thin film with smaller
refractive index than the glass and of continuously varying thickness. The effect can be
used for the testing of lenses, probably exactly as Newton did using the lenses that he
ground himself.
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FIGURE 6–3

6.3 Diffraction

Diffraction is light going around corners. As we saw earlier, when a wavefront reaches
a narrow slit, at each point of the wavefront a Huygens wavelet is emitted that expands
outwards as a spherical wave. As a result, a single slit will produce a pattern on a
distant screen which is qualitatively what is seen in a Young’s slit experiment. This is
called a diffraction pattern but this is really a misnomer—it is actually an interference

pattern. How does this diffraction pattern get formed? We consider a single slit of width
a as in figure 6–4.

FIGURE 6–4
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We notionally divide the wavefront into five sources emitting waves in phase with each
other. The path difference between rays from sources 1 and 3 is

∆L =
1

2
a sin θ

It is the same for rays 2 and 4, and for rays 3 and 5. So if the path difference ∆L is

∆L =
1

2
λ

then rays from the upper half of the slit interfere destructively with rays from the lower
half, so we get a dark fringe on the screen at an angle θ for which

sin θ = ±
λ

a
←− dark

(the ± sign is there because the same argument applies for negative θ).

But the division in two halves is really arbitrary; if we divide into quarters and proceed
as above we find a dark fringe at angles θ given by

sin θ = ±2
λ

a
←− dark

and dividing into six parts,

sin θ = ±3
λ

a
←− dark

So in general we get a dark fringe at angles θ when

sin θ = m
λ

a
, m = ±1,±2,±3 . . . ←− dark

The intensity is not as easy to calculate as in the case of the double slit experiment,
equation (5.1),

I = Imax cos2
(

1

2

2π

λ

yd

D

)

←− double slit (5.1)

so I’ll just give you the result (see Halliday, ch 36 for a proof),

I = Imax





sin
(

πa
λ

sin θ
)

πa
λ

sin θ





2

←− single slit (6.1)

≡ Imax

[

sinα

α

]2

So the pattern we obtain is a broad central bright fringe at θ = 0 flanked by successively
weaker bright fringes interspersing the dark fringes, as sketched in figure 6–5.
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FIGURE 6–5

In figure 6–5 is plotted the quantity α = (πa/λ) sin θ which is in the round parentheses
in equation (6.1). (There is a misprint in the figure—the a is missing.) Whenever α is

an integer multiple of π its sine goes to zero as seen in figure 6–5.† In addition, because
of the denominator α in equation (6-1) the peak intensity falls off with the angle like
1/α.

You may ask, why does the Young’s slit experiment not show diffraction patterns? Well
it does. If we plot the contrast expected in the absence of diffraction in the double slit
experiment it looks like figure 6–6, which is a plot of equation (5.1). Note that there
is no reducing of the intensity with angle as it is a simple cosine squared function with
no denominator. (But bear in mind from lecture 5, page 6, that this result only holds
in the small angle approximation.) Plotting the intensity in this case as a function of
d sin θ shows clearly the condition for maxima as d sin θ = mλ (see page 4, lecture 5).

FIGURE 6–6

But actually the intensity in the peaks gets reduced as sin θ increases because the diffrac-
tion effect multiplies the intensity with its “envelope” of increasingly weaker bright
fringes, figure 6–5.

† You may wonder why the central fringe at α = 0 is bright. But if you take the limit
properly, using the rule of L’Hopital, you find

lim
α→0

sinα

α
= lim

α→0

cosα

one
= 1
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These are combined in an actual experiment. For example here is a pattern from 650 nm
coherent light passing through a double slit of separation d = 18 × 10−6 m and width
a = 4× 10−6 m. (Again the a is missing in the x-axis label, sorry.)

FIGURE 6–7a

FIGURE 6–7b
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Figure 6–7b (Halliday, ch 36, fig 15) shows the same thing. The point is that there
are two spacings in the double slit experiment: the distance, d, between the slits; and
the width, a, of the slits themselves. In the limit of a very small a you can see from
equation (6-1) that I → Imax (because sinα → α) so that for very narrow slits the
central diffraction fringe is very wide. So effectively in Lecture 5 when I described the
double-slit experiment I was tacitly assuming a limit of very narrow slits, or a≪ d ∼ λ.
But you need to know that in the real double-slit experiment the fringes become weaker
as θ increases due to diffraction effects arising from the finite slit-width.

There are many practical applications of diffraction, which you will study later. They
include,

1. Diffraction gratings

2. Holography

3. X-ray crystallography

6.4 Resolution and Rayleigh’s criterion

Consider two distant, not necessarily coherent, sources, S1 and S2. They are a distance
L apart such that rays make an angle θ at a slit aperture, of width a.

FIGURE 6–8

Each object produces a diffraction pattern at the detector. As the angle θ decreases,
either by the objects moving away from the slit or getting closer together the patterns
will move closer. If the central maximum of one conicides with the first minimum of the
other we will have,

sin θ =
λ

a
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If the angle gets any smaller the detector is no longer able to resolve the two objects and
they will appear merged as one. This is the limit of resolution, or Rayleigh criterion.
Actually θ is so small generally that it’s enough to assert that,

θ =
λ

a

Most apparatus, including your eye, use a circular, not a slit, aperture and the analysis
is a lot harder; the result is that

θ = 1.22
λ

d

where d is the diameter of the aperture. Clearly the best resolution is achieved using
a wide aperture, but this will reduce the depth of field. So the quantity to vary is
the wavelength. Currently the greatest resolution is with electron microscopes that can
resolve down to the distances between atoms in a crystal. Practically, though, the limit
of resolution is governed by optical aberations.

6.5 Polarisation

We saw in Lecture 4 how an oscillating electric dipole gives rise to electromagnetic
radiation in the sense of oscillating electric and magnetic fields.

FIGURE 6–9

Of course in a usual source there are dipoles oscillating at all phase differences and
pointing in random directions, and so the light is composed of waves having a random
distribution of E-field and B-field orientations. Nevertheless any electromagnetic wave
can be described as a linear combination of waves polarised in the x- and y-directions.
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Devices can be made that allow light through in only one direction of polarisation
and hence polarised light can be produced. You are probably familiar with polarised
sunglasses. Look up calcite and birefringence on wikipedia.

Finally I need to tell you that light is not a wave. It is made up of particles called
photons and their quantum mechanical nature causes them to act like waves do because
of quantum mechanical interference. The particle nature of light cannot be doubted in
view of observations of the photelectric effect and Compton scattering.

Wave optics is not really a physical explanation any more than geometric optics is, but
it is closer to the truth. But, for example, in thin film interference don’t imagine that
rays only emanate from the front and back surfaces; why should they? Light falling
on a glass film causes photon–electron interactions to set all the outer electrons into
oscillations. These then act as Hertzian dipoles and emit radiation in all directions. All
the complicated quantum mechanical interference gives rise to a final outcome that is
precisely that produced in the wave optics.
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Lecture 7

7.1 Coulomb’s law

We have already talked about gravity; although it’s very weak it is the force that we
experience in everyday life. The force between two melons of mass 1 kg a metre apart
is tiny: about 10−12 N and so in fact gravity is often neglected, as for example in the
mass-on-a-spring example that we studied. The reason we rather rarely encounter the
electrostatic force in everyday life is, paradoxically, because the force is so strong objects
are are almost invariably not charged; however you have experienced it with balloons,
and carpets, and combs and so on.

Whereas the gravitational force between two masses is

F = 6.67× 10−11
m1m2

r2
[N]

the electrostatic force also follows an inverse square law called Coulomb’s law:

F =
1

4πǫ0

q1q2
r2

[N]

Here, the charges, which may be negative or positive take the role of mass, the distance
between them is r and

1

4πǫ0

takes the role of the gravitational constant. They both simply serve to get the units
right: SI units in our case. If r is in metres and the charge is in coulombs the force is
in newtons if

1

4πǫ0
= 9× 109 actually 8.988× 109 [N m2 C−2]

ǫ0 is called the “permittivity of free space” and the 4π is there for sensible reasons.

As an example, if two protons in a nucleus are separated by 10−15 m (1 fm) the repulsive
electrostatic force between them is

9× 109 ×
(1.6× 10−19)

2

(10−15)2
= 230 N

This is about 1036 times larger than their attraction due to gravity. How can nature
produce such a huge ratio between two forces? I don’t think we’ll know until we un-
derstand gravity better. Why don’t nucleii blast apart? Because there is a third even
stronger, attractive force acting upon nucleons called the “strong force”. It does not
concern us in everyday life, because it has a range of only a few fm.

Force is a vector quantity: it has magnitude and direction. Consider two charges q1 and
q2 at positions r1 and r2.
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FIGURE 7–1

We write
r1 = x1̂ı + y1̂ + z1̂k = (x1, y1, z1)

r2 = x2̂ı + y2̂ + z2̂k = (x2, y2, z2)

ı̂ , ̂ , and k̂ are unit vectors in the x, y and z directions. They are dimensionless. The
force on the charge q2 due to the charge q1 acts along the the vector joining the two
charges, r = r2 − r1 shown in figure 7–1. Coulomb’s law states that the vector force is

F = Fx̂ı + Fy ̂ + Fzk̂

= 9× 109
q1q2
r2

r̂ [N]

in which r is the magnitude of the vector r:

r = r2 − r1

= (x2 − x1) ı̂ + (y2 − y1) ̂ + (z2 − z1) k̂

= x̂ı + ŷ + ẑk

and
r =

√

(x2 + y2 + z2)

r̂ is a unit vector pointing in the r-direction:

r̂ =
1

r
r

and is dimensionless. It does not have dimensions of length.
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What if there are more than two charged objects? The principle of superposition states
that the Coulomb force between two charges is unaffected by the presence of other
charges. This is the same principle we earlier learned in connection with the gravitational
force. Hence the force on each charge is the sum of the forces due to all the others each
calculated as if they were acting alone.

All of electrostatics can be deduced from just two postulates,

1. Coulomb’s law

2. Principle of superposition

The study of electrostatics may be stated thus: there is a bunch of charges over there;
what is the force on a charge that I hold up here?

If any of the charges are moving with respect to any others, then the problem is one in
electrodynamics. However only one postulate needs to be added,

3. Eintein’s postulate of special relativity

(a) The laws of physics (not just mechanics) apply in all inertial frames.

(b) The speed of light in a vacuum is the same for all inertial observers, whatever
the motion of the source.

(Actually (a) and (b) can be derived one from the other so there really is only one

Einstein postulate.)

7.2 Electric field

If you are holding up a bunch of point charges of strengths, q1, q2, q3, . . . [Coulomb], all
stationary with respect to each other then if I have a point charge of q0 C, I can place
it somewhere and measure the magnitude and direction of the force it experiences due
to your charges. If I know the values of your charges, q1, q2, q3, . . ., and their positions,
r1, r2, r3, . . ., I can also calculate the force on my “test” charge using Coulomb’s law and
the principle of superposition. I will find a force that is the sum of individual forces,

F01 =
1

4πǫ0

q0q1
r2
01

r̂01 , r̂01 =
(r0 − r1)

|r0 − r1|

F02 =
1

4πǫ0

q0q2
r2
02

r̂02 , r̂02 =
(r0 − r2)

|r0 − r2|

F03 =
1

4πǫ0

q0q3
r2
03

r̂03 , r̂03 =
(r0 − r3)

|r0 − r3|

...

etc.

For example in the case of, say, q2 I can draw a relation like this.
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FIGURE 7–2

r1, r2, r3, . . . are called source points and r0 is called a field point.

At the point r0 I will find that the total force per unit test charge is

E(r0) =
1

q0
(F01 + F02 + F03 + . . .)

I can continue to do this by moving my test charge to any point, r, while you keep
your charges still and thereby I can map out the electric field E(r). This is a vector

field because it defines a vector at each point in space—it is a vector that depends on
another vector. Always remember, electric field is force per unit test charge.

You could imagine a little arrow at every point you wish to indicate the field strength,
like this.

FIGURE 7–3

Examples of a scalar field are,

• T (r), the temperature at any point in a metal bar

• p(r), the pressure in the atmosphere

• h(x, y), height above sea-level, as in a contour map

• V (r), electric potential—we’ll come to that
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Examples of a vector field are,

• E(r), the electric field

• B(r), the magnetic field, or “magnetic induction”

• H(r), the “H-field”, or magnetic excitation (equals B/µ0 in a vacuum)†

• v(r), velocity of flow at point r in a river, or a wind

The are also tensor fields, for example

• R(r, t), Riemann–Christoffel tensor, or curvature, of space time at the point (r, t).

• τ(r), the stress at the point r in a solid

but we shan’t use those here.

7.3 Electric field due to a point charge

I will often come back to one of the simplest problems in electrostatics, namely the
electric field due to a point charge. (The notion of point charge is not a complete
idealisation: as far as we know an electron is a point charge). Now, we know that the
electric field must be radially symmetric and that it becomes smaller, in proportion to
1/r2 as the field point is taken further away from the source point (the point charge). If
the point charge is placed at the origin of a cartesian coordinate system and has charge
q [C], the electric field at a field point r depends only on the magnitude, r, and is

E(r) =
1

4πǫ0

q

r2
[N C−1]

and by convention points away from the source charge if q is positive and towards the
source charge if q is negative.

Take a positive point charge and try to illustrate the electric field by drawing a few
representative arrows whose length depends on the magnitude of the field and which
point in the direction of the field.

† The names given to the B and H fields are problematic (see Griffiths, “Introduction
to Electrodynamics,” p. 271). If you are not dealing with magnetism in matter, then
there is no need to use H since µ0H = B. In the laboratory one deals with H because
this is what can be controlled by varying the current in a solenoid; in fact H = nI
if a current I is passed through a solenoid of n turns per meter. If the solenoid is
empty of matter then the magnetic field is just B = µ0nI. But if you are dealing with
magnetism in matter you may need to use both B and H fields. The problem is what to
call them. Lorrain and Corson, your other recommended reading, call H the “magnetic
field intensity,” and B the “magnetic induction.” Let us rather follow Griffiths and the
sublime Arnold Sommerfeld, and call B the magnetic field or magnetic field strength
and if we need use H we will call it the magnetic excitation, following Sommerfeld and
by analogy with the electric excitation, D; or we will call it the “H-field”. But for
our purposes neither H nor D are required since we do not deal with electricity and
magnetism in matter.
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FIGURE 7–4

If you join the lines up like this,

FIGURE 7–5

you may think that you have lost some information about the strength of the field
which was illustrated by the length of the arrow, but you have not because this is still
evident in the density of the lines. In this two dimensional drawing, the density of lines,
or number of lines crossing a unit length of a circle of radius r, centred at the source
charge, is proportional to 1/r. But in real life, in three dimensions, the number of lines
crossing unit area of a sphere of radius r, centred at the source charge is proportional to
1/r2, exactly reflecting the inverse square law. Therefore we can say that the flux—to
be defined later, but roughly the number of lines penetrating total area—due to a point
charge is constant, independent of r. Only an inverse square law, as in electrostatics or
gravitation, allows us to take this liberty.

Drawing field lines is an illustration only as you choose how many lines to draw, based
upon the amount of patience that you have and how sharp is your pencil. But having
made this choice then the strength of the field is proportional to the density of the field
lines that cut a given area whose normal is parallel to the field.
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Rules for drawing field lines

1. Field lines run from positive to negative point charges. You may choose the num-
ber of lines to draw, but the number entering or leaving a point charge must be
proportional to its charge.

2. Field lines can only end at a point charge or at infinity.

3. Field lines may not cross, because in all places the direction of E is single-valued.

Be cautious with two dimensional representations of the three dimensional field. Later,
we will want to ask how many field lines intersect a unit area and this is not easily related
to the number that cross a line in a two dimensional drawing of the thee dimensional
situation.
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Lecture 8

8.1 Electric field due to two point charges

Let us draw the field lines from two point charges of equal magnitude. If they are both
positive we see this:

FIGURE 8–1

If they are both negative then the sense of all the arrows is reversed. If one is positive
and the other negative then we call this an electric dipole and the field lines look like
this:

FIGURE 8–2

We now try and calculate the electric field due to a dipole of charges +q and−q separated
along the x-axis by a distance d. We ask, what is the electric field at a field point r?
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By the principle of superposition this is the vector sum of the fields due to each point
charge as if the other were not acting. We will assume the case r ≫ d so that we can
regard d2/r2 as negligibly small. If you like, we are working to first order in d/r.

We choose an origin half-way between the two charges and we consider this diagram.

FIGURE 8–3

Note, the problem has cylindrical symmetry—nothing depends on the angle about the
x-axis. E is the vector sum of E(+) the electric field due to the positive charge, and
E(−), that due to the negative charge. Remember that by convention the field points
away from positive charges and towards negative charges. To find E is pretty hard to
work out. It is best done by calculating first the electric potential, but we haven’t got
to that yet. It will serve our purpose well enough to study two limiting cases, namely
α = 90◦ and α = 0.

If α = 90◦ the field point is on the y-axis as drawn below.

FIGURE 8–4

By inspection E only has an x-component, which is twice the x-component of either
E(+) or E(−), the fields due to the individual charges. Let’s find E(+).

E(+) =
1

4πǫ0

q

r2 + 1
4
d2

(− cos θ ı̂ + sin θ ̂ )
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In the denominator,

r2 +
1

4
d2 = r2

(

1 +
1

4

d2

r2

)

≈ r2

to first order, and so

E = 2E(+)
x ı̂ = −

1

4πǫ0

2q

r2
cos θ ı̂

but by inspecting figure 8–4, and again to first order

cos θ =
1
2
d

√

r2 + 1
4
d2

≈
1

2

d

r

so that finally,

E = −
1

4πǫ0

qd

r3
ı̂

The vector qd̂ı is called the dipole moment vector, p [C m], and so we rewrite the last
equation as

E = −
1

4πǫ0

1

r3
p in the case α = 90◦ (8.1)

Please remember that by convention the dipole moment vector points from the negative
charge to the positive charge.

Now for the case α = 0 the field point is on the x-axis as here:

FIGURE 8–5

The summed contribution from the two charges to the electric field at the field point is

E =
1

4πǫ0

q
(

r − 1
2
d
)2 ı̂ −

1

4πǫ0

q
(

r + 1
2
d
)2 ı̂

To first order,
(

r +
1

2
d

)2

≈ r2 + rd

(

r −
1

2
d

)2

≈ r2 − rd
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and this leads to

E =
1

4πǫ0
q

(

1

r2 − rd
−

1

r2 + rd

)

ı̂

=
1

4πǫ0
q

(

(r2 + rd)− (r2 − rd)

(r2 − rd) (r2 + rd)

)

ı̂

=
1

4πǫ0

2qd

r3
ı̂

the last line being correct to first order. In terms of the dipole moment vector we get

E =
1

4πǫ0

1

r3
2p in the case α = 0 (8.2)

This is the same as for the case α = 90◦ except for the factor of two and the minus sign.
In fact for any value of α the electric field is proportional to the dipole moment and
inversely proportional to r3 as long as r ≫ d,

E ∝
p

r3

Compare this with the field due to a point charge which is proportional to 1/r2. This
should not surprise you: since the dipole is electrically neutral it should be harder to
detect from a long distance than the point charge.

8.2 Electric field due to a uniform line of charge

What is the electric field at a perpendicular distance, s, from the centre of a charged
wire of length 2L? We do this using the integral calculus by summing (integrating)
the fields due to infinitesimal segments of the wire and appealing to the principle of
superposition. Consider those two segments of the wire of length dx at a distance x
from the centre of the wire.

FIGURE 8–6

We suppose that the wire is charged uniformly to an amount λ [C m−1]; so the elements
at ±x of length dx each carry a charge

dq = λdx
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By combining the segments at ±x in pairs we exploit the symmetry of the problem and
indeed we observe that for each pair the problem is that of the dipole that we solved in
section 8.1 except that the elements of charge have the same sign. In contrast to the
dipole case of α = 90◦ we seek twice the y-component of the field due to any one of the
infinitesimal segments. By examining figure 8–6 we see that the infinitesimal electric
field due to the two segments of charge is

dE =
1

4πǫ0
2λdx

1

x2 + s2
sin θ ̂

and to get the total field at the field point we sum all these by an integration from zero
to L, and using

sin θ =
s√

x2 + s2

as we see from figure 8–6 using the Pythagoras rule. This leads to

E =
1

4πǫ0
2λ ̂

∫ L

0

s dx

(x2 + s2)3/2

=
1

4πǫ0
2λs ̂

[

x

s2
√
s2 + x2

]L

0

=
1

4πǫ0

2λL

s
√
s2 + L2

̂

Let us consider two limiting cases.

1. If the length 2L is very small compared to s, then we are looking at a short wire
from a very long way off and

E =
1

4πǫ0

2λL

s2
̂

which is the field due to a point charge of charge 2λL as you’d expect.

2. On the other hand if L → ∞ we have
L

s
√
s2 + L2

=
1

s
√

1 + s2/L2
−→

1

s

and

E =
1

4πǫ0

2λ

s
̂

which is the electric field at a distance s from a long straight wire of charge density
λ [C m−1]. We will obtain this result again once we have learned Gauss’s law.
Actually this problem has cylindrical symmetry so we can say that the wire radiates
field lines outwards and the magnitude of the electric field is

E =
1

4πǫ0

2λ

s
(8.3)

noting that the field is inversely proportional to the distance from the wire. It should
not surprise you that the field due to the wire decays away more slowly that the field
due to a point charge.

It is a useful lesson in physics to check any complicated formula you have obtained to see
that in certain limits it gives sensible results or results that you can obtain by another
means.



4CCP1501 Lecture 9 Page 1 of 6 (18 October 2017)

Lecture 9

9.1 Electric field due to a uniform sheet of charge

We imagine a circular sheet of charge and ask, what is the electric field at a point a
distance s above its centre?

FIGURE 9–1

Again we sum by integration but now to exploit the symmetry of the problem the
infinitesimal segments that we sum are narrow rings of charge. We suppose that the
sheet is uniformly charged with a density of σ [C m−2]. The element of charge is a ring
of radius r and carries a charge of

dq = σ 2πr dr [C]

At our field point the magnitude of the electric field due to any point within the ring is
the same and the total field obviously points along the z-axis in figure 9–1 by symmetry.
So the element of the electric field is

dE =
1

4πǫ0

dq

l2
sin θ k̂

in which l is defined in figure 9–1,

l =
√
r2 + s2

by Pythagoras rule; from the trigonometry of figure 9–1

sin θ =
s√

r2 + s2
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and so

dE =
1

4πǫ0

s dq

(r2 + s2)3/2
k̂

=
1

4πǫ0
2πσs

r dr

(r2 + s2)3/2
k̂

We now sum the field from all the infinitesimal rings from the centre at r = 0 to the

edge of the circular sheet at r = R by an integration,†

E =
1

4πǫ0
2πσs

∫ R

0

r dr

(r2 + s2)3/2
k̂

=
1

4πǫ0
2πσs

(

1

s
− 1√

R2 + s2

)

k̂

If we now let R → ∞ we obtain the electric field due an infinite, uniformly charged
sheet, whose normal is the z-axis, carrying a charge density σ C m−2

E =
1

4πǫ0
2πσ k̂

We can say that the electric field is constant and of magnitude

σ

2ǫ0

and pointing perpendicular to the sheet: out of the sheet if the charge is positive and
into the sheet if it’s negative. The field strength is independent of the distance from the
sheet. Can you see why this is so?

You can now easily find the electric field inside and outside a parallel plate capacitor,
neglecting end effects.

† To do this integral, write

I =

∫ R

0

r dr

(r2 + s2)3/2

Substitute u = r2, du = 2rdr giving

2
d

du

(

u+ s2
)

−1/2
= −

(

u+ s2
)

−3/2

Then

I =
1

2

∫ R2

0

du

(u+ s2)3/2

= −
[

(

u+ s2
)

−1/2
]R2

0

=

(

1

s
− 1√

R2 + s2

)
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FIGURE 9–2

Outside the fields cancel and there is no field. Inside the field lines combine and so the
total field is

E =
σ

ǫ0

pointing from the postive to the negative plate.

Let us finish with the following useful table. You must become familiar with the electric
fields (and later magnetic fields) associated with the most common and simple objects.
In particular remember how the fields depend on the distance of the field point from
the source charge density.

charge configuration electric field

point E = 1

4πǫ0

q
r2

∝ 1

r2

dipole E ∝ 1

r3

line E = 1

4πǫ0
2λ
r
∝ 1

r

sheet E = σ
2ǫ0

∝ constant
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9.2 Electric flux

The number of electric field lines that pass through a surface orientated at right angles
to the field is called the flux. The bigger the surface, the bigger the flux. Of course the
number of field lines depends on how sharp is your pencil and how much patience you
have and so is rather subjective; all the same I can define the flux Φ as

Φ = field× area = EA

noting that E is not a vector, it’s its magnitude.

FIGURE 9–3

If the field is not uniform I must take a surface that is infinitesimally small. If I’m
interested in a surface that is not perpendicular to the field, I must multiply E by the
area projected perpendicularly to it. In that situation I draw this.

FIGURE 9–4

da is a shorthand for n̂ da, where da is the infinitesimal area (in the sense of the differ-
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ential calculus) and n̂ is the unit vector normal (perpendicular) to my chosen surface.
E is the electric field at the centre of the infinitesimal area (actually we choose the
infinitesimal area small enough so that the field is constant over its whole area, so it
doesn’t have to be specified as the centre). To repeat: da is a vector whose direction is
normal to the surface and whose length is equal to its area. So da has units [Length]2.
The tiny bit of flux penetrating the infinitesimal area is

dΦ = E · da

The scalar product is zero if E and da are perpendicular; this is what you’d expect for
in that case no flux lines cross the surface as they all lie in the surface. If E and da are
parallel then the flux is Eda which is the product of the magnitudes of E and da—again
this is what you expect as you’ve orientated your surface to be perpendicular to the
field lines.

If I now have a large surface and a non uniform electric field, I can divide the surface
up into infinitesimal pieces and do an integral (a sum) over the surface to get the flux,

FIGURE 9–5

Φ =

∫

S

E · da (9.1)

which means the sum of the increments of flux dΦ over all elements da of the surface,
S. You can probably see that the total area of the surface is

A =

∫

S

da
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9.3 Gauss’s law

Let’s now think of a point charge, q, and its associated electric field lines. What is the
flux? Imagine a sphere of radius r with the charge of amount q at its centre. The field
is everywhere parallel to the normal to the surface, that is the radius vectors pointing
from the the centre to the surface of your imaginary sphere, so the flux through the
surface is

Φ = E × A =
1

4πǫ0

q

r2
× 4πr2

Therefore

Φ =
1

ǫ0
q

The flux is independent of the radius of the imaginary sphere. This is because the area
is proportional to r2 and because of Coulomb’s law the field is proportional to 1/r2 and
the two cancel in the product E ×A. Another way to see it is that the number of field
lines intersecting the surface of the sphere is the same for any sphere. In fact it’s the
same for any closed surface. And the charge need not be at the centre.

I might have a number of point charges (some positive, some negative) but by the
principle of superposition the flux from each will add together. In consequence of these
facts I can assert that the flux penetrating any closed surface is 1/ǫ0 times the charge
inside,

Φ =
1

ǫ0
Qenclosed

If there is only charge outside then any field lines going in will have to come out so there
can be no net flux entering or leaving due to external charges. Because of equation (9.1)
we can write

∮

S

E · da =
1

ǫ0
Qenclosed (9.2)

where the circle on the integral sign indicates that the surface, S, is closed, and Qenclosed

is all the charge inside S.

Equation (9.2) is Gauss’s law. It follows from Coulomb’s law and the principle of
superposition. It holds for any inverse square law, so there is a Gauss’s law also in
gravitation.

Gauss’s law is hugely powerful as a way to find the field due to a distribution of charge
(or mass in the case of gravitation) particularly under either of two circumstances:

1. Gauss’s law can give you an immediate answer to a general question.

2. Gauss’s law furnishes us with a ready solution to the electric field in the case of
charge distributions having certain symmetries. The trick is to find an imaginary
surface of suitable shape so that the flux through its faces is either constant or zero.
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Lecture 10

10.1 Applications of Gauss’s Law

To demonstrate point 2 from the end of the previous lecture, I now want to do the point,
line and sheet of charge again to show you how much easier the problem is if we use
Gauss’s law. Always remember that the surface that we call the “gaussian surface” is
an imaginary construction that you set up as a device to aid your calculation.

10.1.1 Point charge

Here the argument is the reverse of the one we used in Lecture 9, section 9.3, to obtain
Gauss’s law. The electric field due to a point charge obviously has spherical symmetry.
So the clear choice of gaussian surface is a sphere centred on the point charge. This is
because the flux is constant over the surface of the sphere. By choosing a surface of
radius r we can find the electric field as a function of the distance r from the charge.
Of course we do this just once for an arbitrary choice of radius. We also know that
the electric field is radial, that is it points directly away or towards the point charge in
straight field lines, so we only need to concern ourselves with the magnitude, E. So here
is our point charge and our gaussian surface, a sphere of radius r,

FIGURE 10–1

The flux crossing the surface of area

A = 4πr2

is
Φ = EA

and by Gauss’s law, this is

Φ = EA =
1

ǫ0
Qenclosed =

q

ǫ0

Therefore
4πr2E =

q

ǫ0
or

E =
1

4πǫ0

q

r2

which of course we know already.
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10.1.2 An infinitely long, uniform line of charge

The symmetry here is obviously cylindrical: the field lines leave (or enter) the wire
radially in straight lines and so the field strength E is constant at a distance s from
the wire, independent of the direction. The obvious gaussian surface to choose is a
cylinder since for any cylinder of radius s the field is uniform on the curved surface and
of magnitude E(s). As the wire has no ends there is no flux crossing the ends of the
cylinder.

FIGURE 10–2

So we ignore the ends as there’s no flux crossing them and we have the flux equal to

Φ = EA = field× area

= E × 2πsL

If the wire carries a uniform charge λ [C m−1] then the charge inside the cylinder is

Qenclosed = λL

and Gauss’s law tells us that

Φ = EA =
1

ǫ0
Qenclosed

or

E × 2πsL =
1

ǫ0
Lλ

naturally the length, L, of the cylinder cancels as you’d hope it would as this construction
must not depend on how long we choose our cylindrical imaginary surface, and we get

E =
1

4πǫ0

2λ

s

pointing radially with respect to the wire. This is of course the result we obtained
in Lecture 8, equation (8.3), when we obtained it with a much more difficult piece of
mathematics. Mind you, then we got the more general result for a wire of finite length;
you cannot use Gauss’s law in that problem as there is insufficient symmetry.
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10.1.3 An infinite uniformly charged sheet

The infinite sheet carries a uniform surface charge density of σ [C m−2]. Field lines
obviously emanate perpendicular to the surface. I need a gaussian surface that has
a flat parallel face above and below the sheet a distance d away and having sides(s)
perpendicular to the surface whose shape is irrelevant as no flux penetrates them anyway.
So I could use a rectangular box or a cylindrical, so called, “pill box”.

FIGURE 10–3

The area will anyway cancel as you’d anticipate as the construction must not depend
on this. The flux is the same penetrating the upper and lower surfaces, so I have

Φ = E × 2A

and no flux penetrates the sides. The charge inside the imaginary box is

Qenclosed = σA

and so by Gauss’s law

Φ =
1

ǫ0
Qenclosed

or

E × 2A =
1

ǫ0
σA

which leads to

E =
σ

2ǫ0

which naturally is the same as we got earlier in Lecture 9, page 2, by direct integration.
There, we also got the field due do a finite disc.

Why do you think the field due to the infinite sheet does not depend on the distance
away?
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10.2 Charge density

So far we have dealt mostly with point charges or uniform one and two dimensional
distributions of charge. In real life we want to work out the electric field due to non
uniform distributions of charge having a density denoted by

ρ(r) [C m−3]

which varies throughout some volume, V , as a function of position vector r. We recognise
ρ(r) as a scalar field. Ultimately any charge distribution must be a collection of point

charges with charge ±e† and by the principle of superposition the electric field at a field
point r0 is the sum over all the fields due to the elemental charges that make up the
distribution. Here, I want to equip you with the formal mathematics that you will need
in later years of your studies in physics.

Let us re-draw figure 7–1 (Lecture 7) for the case when the source charges are distributed
into a charge density function ρ(r).

FIGURE 10–4

In the little cube, there is an infinitesimal amount of charge dq so the field at the field
point r0 is

dE(r0) =
1

4πǫ0

dq

r2
r̂

† This is the smallest known charge—the charge of one proton. It is true that quarks
have a fractional charge but they only appear in combinations of two or three quarks
such that the total charge is e or zero; the inability to separate nucleons into individual
quarks is called “quark confinement”.
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The total field at r0 is the sum of all these increments of field as I reposition the box at
all values of r1 that range over the volume, V , containing the charge distribution.

Summing the field over contributions from each infinitesimal box amounts to an inte-
gration, in the sense of the integral calculus. Each box has a volume

dx1 dy1 dz1 = dτ1

and the charge in the box is
dq = ρ(r1) dτ1

so the field at r0 is

E(r0) =
1

4πǫ0

∫
V

ρ(r1)

r2
r̂ dτ1 (10.1)

Note that this is a tricky integral because the vector r is not a constant—it depends
upon r1, the position vector of the box dτ1. Please note that in electrostatics we always
define r as the vector that points from a source point to the field point.

In the case of a two dimensional distribution of charge it is conventional to denote the
charge density by

σ(r) [C m−2]

The infinitesimal box becomes an infinitesimal area

da1 = dx1 dy1

and now the electric field at r0 is

E(r0) =
1

4πǫ0

∫
S

σ(r1)

r2
r̂ da1

You may compare this with the integral on page 2, Lecture 9, which is the special case
for which the charge density is uniform, namely,

σ(r) = σ

and can be taken as a constant to the front of the integral sign.

If we are interested in a one dimensional distribution of charge such as along a straight
wire, we usually denote the density by

λ(r) [C m−1]

and the box becomes an increment of line length

dl1 = dx1

and the electric field at the field point r0 is

E(r0) =
1

4πǫ0

∫
L

λ(r1)

r2
r̂ dl1

and this reduces to the integral on page 5, Lecture 8, in the case that the distribution

λ(r) = λ

is uniform.
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Lecture 11

11.1 Electric field is irrotational

If all charges in a problem are stationary with respect to each other, we can prove that
the electric field is “irrotational”.

Consider, again, the electric field due to a point charge,

E =
1

4πǫ0

q

r2
r̂

which points radially away from the charge. Let us now examine the line integral

∫ b

a

E · dℓ

from some point a to some other point b along some path. In figure 11–1 there is a point
charge at the origin of the coordinate system.

FIGURE 11–1

Whatever the orientation of dℓ, E · dℓ is the magnitude of the electric field times the
component of dℓ in the radial direction dr pointing to or from the point charge, so

E · dℓ =
1

4πǫ0

q

r2
r̂ · dℓ

=
1

4πǫ0

q

r2
dr

Therefore
∫ b

a

E · dℓ =
1

4πǫ0

∫ b

a

q

r2
dr

= −
1

4πǫ0

[q

r

]rb

ra
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In the same way that dr is the radial component of dℓ, so ra and rb are the radial
components of the vectors defining the points a and b. That is

ra = r̂a · ra ; rb = r̂b · rb

By radial component of a vector r I mean the distance from the origin to the point r.
Therefore we have,

∫ b

a

E · dℓ =
1

4πǫ0

(

q

ra
−

q

rb

)

Now suppose that the path were closed, that is we deal with any path having a = b.
Then,

∮

E · dℓ = 0

I have only proved this for taking a path in the electric field due to a point charge at the
origin. But the final result makes no reference to where that origin is. Furthermore this
must be true for the electric field due to any distribution of stationary charge, according
to the principle of superposition. So this is generally true for any electric field arising
from static charges.

When you learn Stokes’s theorem you will see that the above result is equivalent to
writing

∇× E = 0

that is, the curl of E is zero.

When you come to dealing with moving charges you will find that this formula becomes
modified to

∇× E = −
dB

dt

where B is the magnetic field. This is one of “Maxwell’s equations” also known as
Faraday’s law of induction. It says that if you grow or shrink a magnetic field inside a
wire loop you will cause a current to flow in the loop. This is how a generator works.

11.2 The electric potential

If I write out

∇× E = 0

in full, it looks like this

(

∂Ez

∂y
−

∂Ey

∂z

)

ı̂ +

(

∂Ex

∂z
−

∂Ez

∂x

)

̂ +

(

∂Ey

∂x
−

∂Ex

∂y

)

k̂ = 0

These are partial derivatives of the components of

E = (Ex, Ey, Ez)
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with respect to components of the position vector r = (x, y, z) and since the resulting
vector is zero, each of its components must be zero and I am left with three equations
relating the three components of E to one another. So in electrostatics the E-field is a
rather special field because of the relations between Ex, Ey and Ez. Only certain vector
fields will be consistent with these interrelations. And what is more, we shouldn’t need
all three numbers Ex, Ey and Ez to specify an electric field in electrostatics, one will
do. Therefore there must be a scalar field from which I can uniquely deduce the electric
field. How can I find this scalar field?

First we ask, what is the work done in moving a charge through an electric field? Work
is force times distance. I do work if I move a positive test charge towards a positive
charge, that is against the direction of the field lines. Otherwise, if it is negative, the
charge does work on my positive test charge. We won’t labour this point, in the latter
case the work I do is negative. Hence if I move a charge q′ a little distance dℓ in an
electric field the work done on the test charge is

−F · dℓ

and if the charge is a unit test charge, one Coulomb in SI units, the work done is

−E · dℓ

since E is the force per unit charge. We require here a scalar (dot) product because
work is only done over that component of the path that is parallel to the field—no work
is done by moving a test charge perpendicular to the field lines.

Go back and look at figure 11-1; the work done on a unit test charge in moving from a

to b is

−

∫ b

a

E · dℓ = −
1

4πǫ0

∫ b

a

q

r2
dr

= −
1

4πǫ0
q

(

1

ra
−

1

rb

)

(11.1)

You can see why this only depends on the difference in (inverse) radial distance from
the point charge at the origin by looking at the two vectors ra and rb,

FIGURE 11–2
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(In this figure the work done is negative because the test charge ends up further away
from q.) No work is done in moving along the dotted arc since the test charge remains
at a fixed distance from q.

The work done is independent of the path taken. It depends only on the inverse difference
between the initial and final radial distances to the point charge. You can appreciate
this by using either of the following arguments.

1. Any path consisting of radial segments and arcs will give the same answer. Try
drawing a few.

2. If you move the test charge from a to b along one path and then back along a different
path, you would not expect to have done any net work. Otherwise you could create
a perpetual motion machine.

FIGURE 11–3

According to point 2., and figure 11-3, it must be true that

∮

E · dℓ = 0

which in fact we have already proved.

As you see from equation (11.1) the work done is just the difference between two num-
bers. Let’s fix what these numbers are by agreeing that in taking our test charge from
a to b we will always stop off at an agreed point P . Then we can define a number V (r)
as the work done per unit charge in moving the test charge from P to r

FIGURE 11–4
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So we have,

V (r) = −

∫

r

P

E · dℓ

which is independent of the path taken. V (r) is called the electric potential at point r
and you must remember that it is only uniquely defined once we all agree where P is.
Almost always we agree to put P at infinity which means away from the influence of
any of the charges in the world.

In that case we can say that the electric potential due to a point charge, q, at the origin
is

V (r) = −
1

4πǫ0

∫

r

∞

q

r2
dr

= −
1

4πǫ0

q

r

There’s no problem if there are other charges present: by the principle of superposition
the electric potential is just the sum of the contributions from each charge. In the case
of a charge distribution, ρ(r) [C m−3] existing in a volume Ω,

V (r0) =
1

4πǫ0

∫

Ω

ρ(r1)

r
dτ1 (11.2)

if r0 is the field point and r1 a source point. To get the geometry look again at figure 10–
4 and compare this with equation (10.1) in lecture 10, page 5. They’re both horrible
looking but believe me (11.2) is a lot easier to deal with as V is a scalar, not a vector,
and there is no unit vector in the integrand. After all, any equation for a vector quantity
like E is really three equations—one for each component.

The units of electric potential are [N m C−1] (electric field times distance) or Joules per
Coulomb. One J C−1 is called a volt [V].

Be very very careful of confusing electric potential with potential energy. Electric poten-
tial is work (energy) per unit charge: a point charge q′ has potential energy relative to
infinity of q′ V (r) [J] when it’s placed at position r where the electric potential is V (r).

Because of the inverse square law there is also of course a gravitational potential which
is work done against a gravitational field per unit mass.

Now I told you that the basic problem in electrostatics is, there’s a bunch of charges (or
charge distribution) over there what is the electric field over here? The answer, if you
can work it out, is contained in equation (10.1). Now I’ve told you, don’t worrry about
equation (10.1) because equation (11.2) is easier. But now you say, how to I get E(r) if
I know V (r)?

We obtain the relation between them using the vector form of the fundamental theorem

of calculus,
∫ b

a

Fdx =

∫ b

a

df

dx
dx = f(b)− f(a)
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if

F =
df

dx

The vector form of this in our instance is

V (b)− V (a) =

∫ b

a

∇V · dℓ

where ∇ is the vector with the property that

∇V (x, y, z) =
∂V

∂x
ı̂ +

∂V

∂y
̂ +

∂V

∂z
k̂

and these are partial derivates. But we saw earlier that

V (b)− V (a) = −

∫ b

a

E · dℓ

and since the two equations are true for any choice of points a and b and any path
between them it must be true that

E = −∇V (11.3)

That means

Ex = −
∂V

∂x

Ey = −
∂V

∂y

Ez = −
∂V

∂z

so if we know V (r) = V (x, y, z) then we can get E(r) by differentiating. You may
wonder how can we obtain a vector, which is three numbers, at a point r from a scalar,
which is one number, at the point r. The point is that it’s not enough just to know the
value of V at r. You need also to know its derivatives which means you need to know
its values in the neighbourhood of r also.

11.3 The electric potential due to a spherical shell of charge

A spherical shell of radius R carries a uniform surface charge of σ [C m−2].† What is
the electric potential relative to infinity at points inside and outside the sphere?

† A solid conductor has all its charge on its surface so this problem also solves the problem
of a charged metal sphere.
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FIGURE 11–5

Step 1. Find the electric field. This must point radially outwards or inwards and can
be found using Gauss’s law. Imagine a concentric sphere of radius r > R. The flux is

Φ =
1

ǫ0
Qenclosed

Now,

Qenclosed = 4πR2 σ ≡ Q

so

Φ = EA

becomes
1

ǫ0
Q = E 4πr2

and since the field is radial

E(r) =
1

4πǫ0

Q

r2
←− r > R

outside the sphere. Inside the sphere the electric field is zero because any gaussian
sphere having radius less than R encloses no charge.

Step 2. So, the electric potential outside the sphere is

V (r) = −

∫ r

∞

E · dℓ

= −
1

4πǫ0

∫ r

∞

q

r′2
dr′

=
1

4πǫ0

Q

r
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(Please don’t be confused but I have put a “prime” on the r in the integrand since that
is a dummy variable, and r itself appears in the limit to the integral—it is the place
where we want to find the potential.)

FIGURE 11–6

Although the electric field inside the shell is zero, the electric potential is not. The
question is, how much work do I have to do on a unit test charge to move it from
infinity to inside the shell and to get it there I have to move it through the electric field
that is outside the shell. I need to do the integral in two pieces,

V (r) = −
1

4πǫ0

∫ R

∞

Q

r′2
dr′ −

1

4πǫ0

∫ r

R

(zero) dr′

=
1

4πǫ0

Q

R
←− r > R

The electric potential inside the shell is constant: once I’ve got my test charge inside I
can move it around without having to do any work because the field inside is zero.

It is very instructive, indeed obligatory, in problems of this type to plot E and V as
functions of distance, in this case from the centre of the shell.

FIGURE 11–7
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Lecture 12

12.1 Electric dipole revisited

In Lecture 8 we struggled to find the electric field due to a dipole and ended up settling
for solutions only for field points either in line with or perpendicular to the dipole. Now
I’ll show you how to get a general solution using the electric potential. Here is the dipole
again, illustrated in figure 12–1.

The vector p = qd is again the dipole moment vector, and remember it points from

the negative to the positive charge by convention; and we’ll work to first order in d2/r2,
that is we only treat the case r ≫ d meaning that we cannot allow the field point P to
get too close. This problem is sometimes called an “ideal” as opposed to a “physical”
dipole.

FIGURE 12–1

The electric potential at P , using the superposition principle is,

V =
1

4πǫ0
q

(

1

r+
−

1

r−

)

We use the cosine rule to write

r2
−
= r2 +

(

1

2
d

)2

+ rd cos θ

r

r−
=

(

1 +
d2

4r2
+

d

r
cos θ

)

−
1
2

= 1−
1

2

(

d2

4r2
+

d

r
cos θ

)

+
3

8

(

d2

4r2
+

d

r
cos θ

)2

+ . . .

In the third line the square root is expanded in a Taylor series. Neglecting terms smaller
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than d2/r2 this comes out to

r

r−
= 1−

d

2r
cos θ +

d2

8r2
(

3 cos2 θ − 1
)

r

r+
= 1 +

d

2r
cos θ +

d2

8r2
(

3 cos2 θ − 1
)

and subtracting these and subsituting into the above equation for V ,

V =
1

4πǫ0
qd

1

r2
cos θ

You can see from figure 12–1 that

qd cos θ = p cos θ = p · r̂

so

V (r) =
1

4πǫ0

1

r2
p · r̂ (12.1)

Note that the potential falls away like 1/r2 compared to that due to a single point
charge which falls off like 1/r. The electric fields remember decay like 1/r3 and 1/r2

respectively.

So how do we get the field from the potential? We need to calculate

E = −∇V

by doing partial differentiation (see Lecture 11, page 6 and your Mathematical Notes
on KEATS). It’s not completely straightforward so I’ll put the maths into the additional
material on KEATS. The result is

E(r) =
1

4πǫ0

1

r3
[3 (p · r̂) r̂− p] (12.2)

As always, r points towards the field point and r̂ is its dimensionless unit vector. I hope
you can see that the results we got on pages 3 and 4 in Lecture 8, are consistent with
equation (12.2). In the first case, equation (8.1), p · r̂ is zero, and in the second case,
equation (8.2), it is p so that (p · r̂)r̂ = p.

12.2 Electrostatic energy

Associated with a collection of point charges is an electrostatic energy which is the work
done in assembling this collection of point charges, each being brought in from infinity
where the electric potential is zero. Suppose I put a point charge of amount q1 at r1, q2
at r2 and so on. To add q2 at r2 when q1 is already at r1 requires an amount of work,

1

4πǫ0
q2

q1
r12
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which is the charge q2 times the electric potential at r2 due to the charge q1 at r1.

FIGURE 12–2

To add the charge q3 I need to do this much more work:

1

4πǫ0
q3

(

q1
r13

+
q2
r23

)

To add the next charge, q4 at r4, the work I do is

1

4πǫ0
q4

(

q1
r14

+
q2
r24

+
q3
r34

)

The total work done is the sum of all these terms,

1

4πǫ0

(

q1q2
r12

+
q1q3
r13

+
q2q3
r23

+
q1q4
r14

+
q2q4
r24

+
q3q4
r34

)

Note that by working with the electric potential, not the electric field, we don’t need to
deal with vectors.

If I want to assemble N charges then I hope that you can see that the work I have to
do can be written using “summation signs” as

W =
1

4πǫ0

1

2

N
∑

i=1

N
∑

j=1

j 6=i

qiqj
rij

and the factor of a half appears because I’ve counted every pair twice in the double sum.
Now, I can write this in a different way,

W =
1

2

N
∑

i=1

qi







N
∑

j=1

j 6=i

1

4πǫ0

qj
rij







but the sum in parentheses is the potential at the point ri due to all the other charges.
We say that this is the electric potential, V (ri), “seen by” qi.

Therefore

W =
1

2

N
∑

i=1

qi V (ri) (12.3)
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Now if I had a continuous distribution of charge ρ [C m−3] then for qi I would write an

infinitesimal bit of charge density, ρ(ri)dτi (see Lecture 10, section 10.2, p. 5).† I will
now have an energy associated with this distribution of charge that is

W =
1

2

∫

ρV dτ (12.4)

where you remember that an integral is just a sum over infinitesimal elements.

Now there’s some difficult mathematics, but a very significant result emerges. Using the
differential form of Gauss’s law (see additional material at KEATS) ∇ · E = ρ/ǫ0,

W =
1

2
ǫ0

∫

Ω

(∇ · E) V dτ

=
1

2
ǫ0

{

−

∫

Ω

E · (∇V ) dτ +

∮

S

V E · da

}

=
1

2
ǫ0

{∫

Ω

E2 dτ +

∮

S

V E · da

}

I am using Ω for volume rather than V in this lecture so as not to confuse it with the
electric potential. Going from the first to the second line I have used integration by
parts, and to get to the third line from the second I have used equation (11.3) from
Lecture 11, namely,

∇V = −E

Now, S is the surface bounding the volume Ω. I can assume for the present purposes
that my charge distribution is isolated in a volume infinitely far from any other charges
so I can make that volume big enough so that the potential vanishes at its surface. In
that case the second term is zero and taking what remains we arrive at this insight
provoking result,

W =
1

2
ǫ0

∫

all

space

E2 dτ (12.5)

The electrostatic energy is evidently contained within the field itself, or if you will, it is
stored in the empty space surrounding the charge distribution.

12.3 Electrostatic energy of a charged capacitor

Two plates separated by vacuum have area A, separation d, and are charged to +Q and
−Q respectively. The surface charge density is

σ =
Q

A
[C m−2]

† At this point I am cheating you and I’ll come back later in the lecture to show you how
you’ve been misled. I’ll be surprised if you can spot right now where the inconsistency
lies in this paragraph.
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FIGURE 12–3

The electric field is constant between the plates and zero outside the plates. Inside the
field is

E =
σ

ǫ0
=

1

ǫ0

Q

A

(See Lecture 10, p. 3.) The potential difference is

V = −

∫ left plate

right plate

E · dℓ = −E

∫ left plate

right plate

dℓ = Ed

=
1

ǫ0

Q

A
d =

Q

C

where C = Q/V is the capacitance. In this case

C =
Aǫ0
d

[C V−1]

One Coulomb per volt is called a farad. The electrostatic energy is

W =
1

2
ǫ0

∫

inside

the plates

E2 dτ

=
1

2
ǫ0 E

2

∫

inside

the plates

dτ

=
1

2
ǫ0E

2Ad

because the last integral is just the volume Ad inside the capacitor. Hence

W =
1

2

1

ǫ0
Q2 d

A
=

1

2

Q2

C
=

1

2
QV

The purpose of the capacitor is to store charge, not energy; so a high capacitance, Q/V ,
means a large charge is stored using a low voltage. We can increase the capacitance by
replacing vacuum with a material of large relative permittivity ǫr to

C =
Aǫ0ǫr
d
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12.4 Electrostatic energy of a charged spherical shell

Let us go back to the problem of Lecture 11, section 11.3, p. 6. What is the electrostatic
energy of the spherical shell of radius R carrying a charge Q? We need to square the
electric field and integrate over all space. The field inside the shell is zero so we just need
to consider the space outside. We must be careful to do it properly. Divide the space
into concentric infinitesimal shells of radius r and thickness dr; these have a volume of
4πr2dr (area × thickness). In each of these shells the field is uniform (because they’re
infinitesimally thin) and has the value

E(r) =
1

4πǫ0

Q

r2

We want E2 times the elemental volume of the shell integrated from R to ∞,

W =
1

2
ǫ0

∫

∞

R

Q2

16π2ǫ20

1

r4
4πr2 dr

=

∫

∞

R

Q2

8πǫ0

1

r2
dr

=
Q2

8πǫ0

[

−
1

r

]

∞

R

=
1

4πǫ0

1

2

Q2

R
(12.6)

Now suppose I shrink the shell by reducing the radiusR while at the same time increasing
the surface charge density σ [C m−2] in such a way that the total charge remains equal to
Q. In the limit of R → 0 I obtain a point charge—the subject of much of these lectures.
So I evaluate equation (12.4) using R = 0 and I get the energy contained within the
field of a point charge,

W = ∞

What the hell is happening here? Another thing may have struck you as odd. According
to equation (12.5) the electrostatic energy is always positive; but if I bring a negative
point charge up to a positive point charge I will gain energy from the work that the
charge does for me. W should be able to have either sign!

The difficulty can be partially resolved. In going from equation (12.3) to (12.4) I did
something sneaky. I wrote

qi −→ ρ(ri)dτi

I smeared all the point charges into a distribution so that equation (12.4) contains all
the energy to assemble the charge distribution whereas equation (12.3) accepts the point
charges as given and expresses just the energy to move them about. This is evidently
just as well if you are dealing with point charges since the energy to make one is appar-
ently infinite. In that sense the difference in numerical value between equations (12.4)
and (12.3) is an infinite number! Which equation is actually the “right” one?

This point is very hard to resolve. Take the electron. It’s probably a point charge—at
least no-one has yet measured its radius, and if that were not zero then surely we could
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break the electron into pieces; but no-one has managed to do that either. We explore
this matter a bit more in the tutorials.
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Lecture 14

14.1 The Lorentz force

Suppose I position two point charges, qa and qb; qa at the origin O2 of a cartesian coor-
dinate system, and qb at some point (x2, y2) in the x2–y2-plane of the same coordinate
system.

FIGURE 14–1

What’s the force acting between them? Easy. Let’s treat qb as the test charge and qa
as the source charge. Then the force acting on qb is

qb Ea

where Ea is the electric field at (x2, y2) due to the source charge qa.

Now suppose that both charges are moving with a constant velocity u in the x2-direction.
What is now the force on qb? Measured by an observer also moving at velocity u the
force is the same, qbEa, because according to the principle of special relativity it is not
possible to devise an experiment to detect the uniform motion of a frame of reference
by making measurements within that frame.

But suppose I make the observation of the force on qb from within an inertial frame
with origin O1 with respect to which O2 is travelling at constant velocity u in the x2-
direction. Let us call O1 the laboratory frame. Then I could be observing two electrons
leaving a field emitter or electron gun and travelling parallel to each other at a velocity
u.

I will not go through the mathematics. Consult chapters 11–13 of “Electromagnetic
Phenomena” or chapters 13–17 of “Electromagnetic Fields and Waves” (chapters 5–6
in the second edition) by Lorrain, Corson and Lorrain. The point is that you have to
make a Lorentz transformation of the force

F =
d

dt
(mu)

the rate of change of relativistic momentum. This involves transforming from frame O2

into frame O1. The result is astonishing. In addition to the electrostatic force qbEa, there
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arises a force on the charge qb that acts in a direction perpendicular to the trajectory of
qa.

FIGURE 14–2

We may regard this additional force as the effect of an additional field whose field lines
encircle the trajectory of the charge qa.

FIGURE 14–3

Viewed from the laboratory the force acting on the charge qb is

Fb = qb Ea + qb (u×B)

= Felectric + Fmagnetic

and this introduces the so called magnetic field, B, sometimes also called the magnetic

induction.

This case can be generalised to one in which the charge qa is fixed in frame O2 and
the charge qb is moving relative to qa. The moving charge, in this case qa, generates a
magnetic field. This field will act upon another moving, test, charge, in this case qb, to
produce a “magnetic” force, Fmag that is perpendicular to both B and the velocity v,
which is the velocity of qb as observed in the laboratory frame.

The total force acting upon a point charge, q, moving in electric and magnetic fields is
called the Lorentz force,

F = q (E+ v ×B)

Study this formula carefully. The electric force qE on a test charge in electric and
magnetic fields acts in a direction parallel to the electric field, but the magnetic force
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qv×B acts in a direction perpendicular to the magnetic field and perpendicular to the
velocity of the test charge. Moreover the force due to the magnetic field depends on the
speed of the test charge. Technically we say that the magnetic force is non conservative

that means it cannot be written as the gradient of a potental energy; also because the
magnetic force is perpendicular to a particle’s velocity magnetic forces cannot do work.

A simple manifestation of the magnetic force is the fact that two current carrying wires
will repel each other,

FIGURE 14–4

or attract each other,

FIGURE 14–5

which is easily demonstrated in a laboratory. Of course the force is on the electrons not
on the wire itself. We have to imagine that the electrons try to move in the direction
of the force and by the electrostatic force between them and the nuclei of the atoms in
the metal these nuclei have to come along for the ride and the whole wire then moves.

FIGURE 14–6

Around each wire is a circulating magnetic field. Moving charges in the other wire
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experience a magnetic force

Fmag = qv ×B (14.1)

Just for clarity, in figure 14–6 I’ve not drawn the magnetic field due to the right hand
wire. Note the convention that a tiny circle with a “dot” in it refers to a current
flowing towards you (as if you were seeing the point of an arrow approaching) and a
tiny circle with a cross in it denotes the opposite (as if you were observing the feathers
of a receding arrow). In figure 14–6 I show a current flowing towards you—that is a
current of positive charge (q > 0); you always have to be careful because thanks to
an unfortunate misunderstanding over a hundred years ago, electrons are assigned a
negative charge. So regrettably the usual carriers of current in a metal wire move in the
opposite direction to the current as defined conventionally.

Please note also that the “right hand rule” that you have no doubt learned is a picture
of the vector cross product in a right handed cartesian system of coordinates.

14.2 Current and current density

In a sense, current in magnetostatics playes the role of charge in electrostatics. Elec-
trostatics is the study of relatively stationary charges; “magnetostatics” by analogy is
the study of fixed steady currents. When we become interested in time-varying charges
and currents we appeal to the subject called “electrodynamics”. By current I mean the
amount of positive charge that passes a given point in unit time. A flow of negative
charge is equivalent to a flow of positive charge in the reverse direction. Current is
measured in the unit of Coulomb per second, or ampere (“A” or “amp”). One amp is
one C s−1.

If a line of charge of density λ C m−1 travels down a wire at a speed v then the current
is

I = λv [A]

Even at constant speed the velocity v may vary along the wire, unless of course the wire
is straight.

FIGURE 14–7

Figure 14–7 shows an “element of line length” dℓ having dimensions of length which we
will be using a lot in the integral calculus that follows. You may think of it as you do
the increment dx in the differential and integral calculus, but here we need to account
for the possible changes in direction over the interval of integration. This leads us to the
concept of a line integral, which you may wish to study separately, but will be illustrated
in these lectures by way of examples.



4CCP1501 Lecture 14 Page 5 of 6 (13 November 2017)

So, the current in a wire is really a vector,

I = λv

If a current carrying wire is placed in a magnetic field then each segment of wire behaves
as does a moving charge and experiences a Lorentz force.

The segment of vector length of wire dℓ carries a charge

dq = λ dℓ

and this charge is moving with a velocity v in the direction of dℓ. So the magnetic force
acting on the segment of wire is

dFmag = dq (v ×B)

The total magnetic force on the wire is this, integrated along the length of the wire,

Fmag =

∫
(v ×B) dq

=

∫
(v ×B)λ dℓ

=

∫
(I×B) dℓ (14.2)

The current is usually constant along the wire and so

Fmag = I

∫
(dℓ×B)

Normally a wire has some thickness. Current density is the charge crossing a unit area
in unit time. Consider an element of length dℓ of a wire of cross sectional area a carrying
a uniform mobile charge density ρ moving at a constant speed v in the direction of dℓ.

FIGURE 14–8

The object in figure 14–8 is a volume element and for these we always use the notation
from the integral calculus dτ = dx dy dz so the infinitesimal volume

dτ = a dℓ

contains a charge
dq = ρ dτ = ρ a dℓ (density× volume)
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This charge passes through the end-surface of area a in a time

dt =
1

v
dℓ

so the current is

I =
dq

dt
=

v

dℓ
ρ a dℓ = ρva

Hence we can deduce a current per unit area vector, having magnitude I/a, that we call
J, the current density,

J = ρv

If the element of wire is placed in a magnetic field B the magnetic force on the whole
wire, in comparison with equation (14.2), is the integral

Fmag =

∫
(v ×B) dq

=

∫
(v ×B) ρ dτ

=

∫
(J×B) dτ

over all the volume elements dτ in the wire.
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Lecture 15

15.1 The law of Biot and Savart

The Lorentz force formula tells us the force on a moving charge or current carrying wire
in a magnetic field. But the magnetic field is itself the product of moving charges or

currents in a wire.† So if I know the current, what is the associated magnetic field? I
will answer this in this lecture only for the case of steady currents, that is I and J do
not vary in time; this is the study of magnetostatics.

The magnetic field due to a steady current I is (see figure 15–1)

B(r0) =
µ0

4π

∫

1

r2
(I× r̂) dℓ1

=
µ0

4π
I

∫

1

r2
dℓ1 × r̂ (15.1)

and this is called the law of Biot and Savart. You may think of this as a phenomenological
statement as you do Coulomb’s law which is the result of many observations. This is
of course how many great edifices in physics are built: gravitation, thermodynamics,
electrodynamics; each a set of theories and conclusions that allow us to predict events
in the physical world constructed from a very small set of postulates. For example
thermodynamics is a very powerful discipline based on its famous laws which themselves
are regarded as either postulates or generalisations of our experience. On the other hand
the Biot–Savart law follows directly from a Lorentz transformation of the force as does
the Lorentz force itself. I have said that all electrodynamics follows from Coulomb’s law
and the principle of superposition and I stand by this as long as you are happy to invoke
also the Lorentz transformation of the force. It is as Feynman emphasises in his Lectures,
“magnetism is a relativistic consequence of electricity.” Of course you’ve not studied
relativity yet and so I am happy that you follow many textbooks and believe that the
magnetic force is another, almost unrelated, force additional to the Coulomb force which
is dictated by an experimental law, namely the Biot–Savart law, equation (15.1). On the
other hand I want you to be aware that electricity and magnetism are manifestations of
the same phenonenon, and to me at least, the fundamental underlying laws are as I keep
stating, Coulomb’s law and the principle of superposition. Unfortunately I cannot take
you through all the steps to arrive at the Lorentz force and the Biot–Savart law just
because you have yet to discover special relativity and also because of lack of time. My
favorite place for learning this is one of the books by Lorrain and Corson, partly because
they put their chapters on relativity in between those of electricity and magnetism rather
than at the end of the book as does Griffiths. On the other hand, as always, Griffiths’s
account of special relativity is excellent. Maybe as an interim measure if you are feeling
a little faint hearted, study the chapter on special relativity in your first year textbook
“Principles of Physics” at least up to the transformation of momentum.

† This reciprocity, you will see later, is captured in the symmetry between Faraday’s law
and Ampère’s law.
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Now, to return to the Biot–Savart law, equation (15.1), the constant µ0 is

µ0 =
1

ǫ0c2
= 4π × 10−7 [N A−2]

The units of B come out as [N A−1 m−1]. One N A−1 m−1 is called a Tesla [T]. You
may wonder why we need the extra constant µ0 as we already have ǫ0 from getting the
SI units into Coulomb’s law and we already have the speed of light, c. Well, I’m sorry
you’ll have to keep on wondering. It gets a little clearer when you study electric and
magnetic fields in matter. In these lectures we treat these fields only in the vacuum. Of
course the appearance of the constant c reminds you that we are dealing with relativity,
but we conceal this in the SI system of units by using mostly ǫ0 and µ0 in our formulas.
ǫ0 is often called the “permittivity of free space”, and as we say briefly in Lecture 12,
p. 5, this is multiplied in matter by the material’s “relative permittivity” ǫr to arrive at
the permittivity ǫ of the material. In similar vein µ0 is called the permeability of free
space and in matter we deal with the permeability µ of a material.

FIGURE 15–1

Next, let us be absolutely clear about equation (15.1). We have a current flowing through
a line element of wire (or space) dℓ1 and we put on a subscript “1” as we do in figure 10–
4 in on p. 4 of Lecture 10 as this labels a source point, r1. We then ask for the magnetic
field at a field point r0 which as we did in figure 10–4 under our study of Coulomb’s law
we indicate with a subscript “0”. Again as in Lectures 7 and 10 we define the vector
r as the vector that points from the source point r1 to the field point, r0. To find the
magnetic field at the field point I then have to integrate equation (15.1) along the whole
length of the wire. As in electrostatics this integral is in general difficult to do because
the vector r is not a constant—it depends on the position vector of the varying source
point r1.
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Note the similarity between the Biot–Savart and Coulomb laws, in particular the inverse
square dependence on the distance between field and source points. In SI units magnetic
field is “force per unit charge per unit velocity,” whereas electric field remember is force
per unit charge.

15.2 Magnetic field due to a long straight current carrying wire

We now use the Biot–Savart law to deduce the magnetic field due to a long straight
current carrying wire.

FIGURE 15–2

In figure 15–2, P is a field point, a perpendicular distance s from the wire. The magnetic
field at P is in the direction of dℓ1× r̂ and so points out of the page above the wire (and
into the page below the wire); you can use the right hand rule also to get the directions.
As we have done in electrostatic problems we try and avoid the full vector algebra by
deducing the direction of the field from the geometry of the problem leaving us only to
find the magnitude of the field. Now the magnitude of dℓ1 × r̂ is

dℓ1 sinα = dℓ1 cos θ

since the magnitude of r̂ is one, and using some trigonometry we can also see that

ℓ1 = s tan θ

and that by differentiating this we can arrive at

dℓ1 =
s

cos2 θ
dθ

Also from figure 15–2 we can see that

s = r cos θ

which means, after squaring this, that

1

r2
=

1

s2
cos2 θ
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Putting all this into the Biot–Savart law, equation (15.1) we find the magnitude of the
magnetic field,

B =
µ0

4π
I

∫ θ2

θ1

(

1

s2
cos2 θ

)

( s

cos2 θ

)

cos θ dθ

The idea here is to integrate between the end points of the wire after changing the
variable to θ as shown in figure 15–3.

FIGURE 15–3

We don’t ask where the current goes at the ends—this is the contribution to the magnetic
field due to this finite segment of current; the integration results in

B =
µ0

4π

I

s
(sin θ2 − sin θ1)

Let’s suppose we want the magnetic field strength at a perpendicular distance from the
centre of the wire. Then the angle θ belongs to a right angled triangle whose lengths s
and 1

2
L are at right angles and you can convince yourself using a diagram that in this

case

sin θ =
1
2
L

√

1
4
L2 + s2

=
1

√

1 + 4s2

L2

which leads to

B =
µ0

4π

I

s
(sin θ − sin(−θ))

=
µ0

4π

I

s

2
√

1 + 4s2/L2

If we are interested in an “infinitely long” wire then we take the limit as L → ∞ and
so we arrive at this very simple and important result

B =
µ0I

2πs
(15.2)

Compare this with the electric field due to a line of charge which we obtained in Lecture 8
by brute force as we have done here, and very elegantly using Gauss’s law in Lecture 10.
Especially note the dependence of the field strength on the inverse distance from the
wire. Instead of radiating in or out of the wire as do the electric field lines, the magnetic
field lines encircle the wire. And of course in the electric case the wire is charged, while
in the magnetic case it may be neutral but must be carrying a current.
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You may ask if we have a simple way of doing high symmetry problems in electrostatics

using Gauss’s law, is there a similar scheme in magnetostatics? The answer is yes, we
can use Ampère’s law, which we will come to in Lecture 17.

15.3 Magnetic field due to a current carrying loop

You may have wondered whether there is a potential associated with a magnetic field in
analogy to the electric potential. Well as I’ve said the magnetic force is non conservative
so it cannot be obtained as the gradient of a scalar potential as can the electric force.
Nonetheless there is a “magnetic potential” but it’s not a scalar field it’s a vector field,
given the symbol A and called the vector potential. It is related to the magnetic field
by the formula

B = ∇×A

So it’s not obviously easier to work with and we won’t use it this year. You just need
to know it exists and to accept some of the results in the following lectures when I say
that they may only be obtained using the vector potential. The vector potential really
comes into its own in quantum mechanics and both V (r) andA(r) enter the Schrödinger
equation for charged particles in electromagnetic fields. Indeed in quantum mechanics
V and A appear to be more fundamental than E and B.

Without using the vector potential it’s hard to study the current carrying loop. This
is similar to what we found in the case of the electric dipole—we could only obtain a
complete solution using the electric potential; when dealing with the electric field in
lecture 8 we were only able to solve the problem in two special highly symmetric cases,
namely when the field point was perpendicular to or along the axis of the electric dipole.
The same situation arises here and using B we can only find the magnetic field at a
field point perpendicularly above the centre of the current carrying loop. You will see
in a moment why I make an analogy between an electric dipole and a current carrying
loop—the latter turns out to behave as a “magnetic dipole”.

FIGURE 15–4

We can easily guess what the magnetic field lines look like if we sketch the loop end-on
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so there’s a current coming towards us and a current flowing into the page (see the
“dot-cross” convention I described in Lecture 14, p. 4).

So right in the centre there is a field line running straight through the loop. Let’s find
the strength of the magnetic field along this field line.

Please compare figure 15–5 with figure 15–2. The little element dℓ1 induces a magnetic
field dB at the field point. The vector dB is perpendicular in a right handed sense to
both dℓ1, which is in the velocity direction of the current, and r the vector pointing
from source to field point. R is the radius of the wire loop which carries a current I
and we are interested in the magnitude of the magnetic field at the field point. We only
need the magnitude as we know its direction. Now the field dB is, according to the
Biot–Savart law,

dB =
µ0

4π
I
1

r2
dℓ1 × r̂

FIGURE 15–5

We only want the z-component of this; other components will cancel by symmetry as
you can see from figure 15–5, when all the elements from around the loop are added
up. So we only want the magnitude of dℓ1 × r̂ which is simply dℓ1 because dℓ1 is
perpendicular to r̂ (whose magnitude is one as it’s a unit vector). We will multiply this
by cos θ to get the z-component. This leads us to

B =
µ0

4π
I

∮

1

r2
cos θ dℓ1

=
µ0

4π
I
cos θ

r2

∮

dℓ1

since in this particular case both θ and r are constant and may move outside the integral
sign. The integral of dℓ1 around the loop is its circumference 2πR, so now

B =
µ0

4π
I
cos θ

r2
2πR

=
1

2
µ0I

R2

(R2 + z2)3/2
(15.3)
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because cos θ = R/r and r2 = z2 +R2. If we stay a long way away from the loop along
the straight field line then z ≫ R and the magnetic field is

B(z) =
1

2
µ0 I R

2 1

z3
k̂ (15.4)

and I have put back the vector direction since I know what it is. Note the inverse cube

dependence on the distance z from the loop to the field point. You can compare this
with the electric field along the axis of an electric dipole, equation (8.2), in Lecture 8,
p. 4. In fact we define the magnetic dipole moment of the loop as

m = current× area× vector perpendicular to the loop

= πR2I k̂

so that

B =
1

2π
µ0

1

z3
m

You may remember that for the electric dipole we obtained this general formula for the
electric field, which is independent of the coordinate system,

Edip(r)
1

4πǫ0

1

r3
(3 (p · r̂) r̂− p)

Now, without proof, I can tell you that the general formula for the magnetic field due
to a dipole of moment m is

Bdip(r) =
µ0

4π

1

r3
(3 (m · r̂) r̂−m)

Figure 15–6 illustrates both types of dipole and note that we can talk of “ideal” and
“physical dipoles”.
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Electric Dipole

Pure Dipole Physical Dipole

Dipole moment: Dipole electric field: Torque in applied electric field E:

p= qd k̂ , Edip(r) =
1

4πǫ0

1

r3
(3 (p · r̂) r̂−p) , T = p×E

Magnetic Dipole

Pure Dipole Physical Dipole

Dipole moment: Dipole magnetic field: Torque in applied magnetic field B:

m= IA k̂ , Bdip(r) =
µ0
4π

1
r3

(3 (m · r̂) r̂−m) , T =m×B

FIGURE 15–6
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Lecture 16

16.1 Magnetic field at the centre of a solenoid

A solenoid is a tightly wound coil carrying a current I. The radius is a and there are n
turns per meter. By “tightly bound” I mean we can neglect the pitch of the turns and
treat them as loops perpendicular to the axis. In this approximation there is no current
parallel to the axis of the solenoid.

FIGURE 16–1

What is the magnetic field at the point P? We consider an elemental length of the coil
dl and we treat it as a loop of current,

dI = In dl

The loop subtends an angle θ at the point P

FIGURE 16–2

We now use our formula for the magnitude of the magnetic field due to a loop of current,
equation (15.3). The contribution to the z-component of the field, Bz, at P due to the
loop of infinitesimal thickness dl is

dBz =
1

2
µ0 dI

a2

(a2 + l2)3/2

with

dI = In dl

the right hand side being the current times the number of turns per unit length times
the length of the infinitesimal element. Consider this triangle
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FIGURE 16–3

By trigonometry we see that

a2 + l2 = r2

r =
a

sin θ
, r3 =

a3

sin3 θ

l =
a

tan θ
, dl = −

a

sin2 θ
dθ

and using all of these constructions, we get

dBz =
1

2
µ0 n I

a2

(a2 + l2)3/2
dl

=
1

2
µ0 n I

a2

r3
dl

=
1

2
µ0 n I

sin3 θ

a
dl

= −

1

2
µ0 n I sin θ dθ

Now we have dBz in terms of the subtended angle θ and to get the total magnetic field
at P we need to add all the incremental elements by an integration between θ1 and θ2
which are the angles subtended at P by the right and left hand ends of the solenoid in
figure 16–2. So we have

Bz = −

1

2
µ0 n I

∫ θ1

θ2

sin θ dθ

=
1

2
µ0 n I (cos θ1 − cos θ2)

If the solenoid is “infinitely long” then P is obviously inside the coil and you should be
able to see that

θ2 = 0 and θ1 = π

so that
Bz = µ0 n I (16.1)

This is very important and well known result. The field along the axis of a long solenoid
is

µ0 × the current× the number of turns per unit length
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and it points along the axis in a direction such that if you look down the coil and the
current is turning anticlockwise then the magnetic field is pointing towards you.

Later we will find the field everywhere near a solenoid, but we’ll need help. Just as in
electrostatics when the problem got hard we could appeal to Gauss’s law, in magneto-
statics we’ll be able to use Ampère’s law. And in place of gaussian surfaces we will use
amperian loops. But first we need to define the magnetic flux and obtain Ampère’s law.

16.2 Magnetic flux

By analogy with electric flux we may define magnetic flux which is again a measure of
the spacing of the field lines. The flux penetrating a surface S is

Φ =

∫
S

B · da

which you can compare with equation (9.1) in Lecture 9, p. 5. I will not invent another
symbol for magnetic flux as we will never deal with the two simultaneously and there will
be no confusion as to which of the two I mean—we could of course give them subscripts
like ΦE and ΦB (or indeed Φm for gravitational flux) but we won’t. We illustrate the
magnetic flux like this.

FIGURE 16–4

Magnetic flux has SI units of [T m−2] called webers. One weber is one Tesla square
meter or one volt-second [V s].

16.3 Divergence of the magnetic field

If our surface is closed then we know in the case of electric flux from Gauss’s law that
the flux integrated over the surface is equal to Qenclosed/ǫ0, that is, proportional to the
enclosed source of electric field (namely charge). There are no sources of magnetic field,
that is isolated north or south poles. No-one has ever found a magnetic monopole. So
until they do, we can assert that ∮

S

B · da = 0
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which is the same thing as writing (see the additional material at KEATS)

∇ ·B = 0 (16.2)

In fact this result can be deduced from the Biot–Savart law and hence from the Lorentz
transformation of the force (see the text books by Lorrain and Corson). So if a monopole
is ever found it will throw a big spanner into a lot of well established physics.

16.3 Curl of the magnetic field

The magnetic field lines circulate around a long straight current carrying wire. The
magnetic field has no divergence as we just saw in section 16.2, and its curl is parallel
to the wire.

FIGURE 16–5

The magnitude of B a distance s from the wire is

B =
µ0I

2πs

as we saw in Lecture 15, equation (15.2). So the integral around a closed loop of radius
s concentric with the wire, is,

∮
B · dℓ =

∮
µ0I

2πs
dℓ

=
µ0I

2πs

∮
dℓ

=
µ0I

2πs
2πs

= µ0I

where I have exploited the fact that B and dℓ are always parallel so the dot product
turns into just the product of the magnitudes B and dℓ. Although it’s not immediately
obvious it is true for any loop that encircles the wire. On the other hand for any loop
that does not enclose the wire, the integral is zero. See figure 16.6.
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FIGURE 16–6

If I have a bundle of long straight current carrying wires, with currents I1, I2, I3 . . .

FIGURE 16–7

I will have ∮
B · dℓ = µ0Ienclosed

The magnetic field integrated around any closed loop is equal to µ0 times the current
that penetrates the loop. Some people say the current “linked by” the loop.

Note the similarity to Gauss’s law which relates electric field to charge; here we are
relating magnetic field to current. If we focus as in figure 16–7 on any surface that is
bounded by the loop then we can see that

Ienclosed =

∫
S

J · da

I hope that you can see this; you will have to study figure 16–7 carefully. Now when
you have learned Stokes’s theorem you will come back to these notes and agree with me



4CCP1501 Lecture 16 Page 6 of 6 (24 November 2017)

that ∮
B · dℓ =

∫
S

(∇×B) · da

= µ0

∫
S

J · da

and for this to be true over any of the infinite number of surfaces bounded by our loop,
the integrands must be equal, leading to

∇×B = µ0 J (16.3)

which is Ampère’s law and states that the curl or circulation of the magnetic field is
equal to µ0 times the current density.

I have only demonstrated Ampère’s law for the case of currents in straight wires. It is in
fact generally true as can be shown from the Biot–Savart law. Indeed Ampère’s law and
the Biot–Savart law are equally fundamental and one can derive each from the Lorentz
transformation and each from the other.
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Lecture 17

In applications of Ampère’s law we always employ the integral form, as we do with
Gauss’s law, that is

∮

B · dℓ = µ0

∫

S

J · da

That is to say, if we can identify a suitable loop through which we know a certain current
passes, then if we know from symmetry that the magnetic field has constant magnitude
along that loop then we can easily work out the magnetic field once we know the current.
We might also be helped by knowing the surface integral on the right hand side may be
made over any convenient surface as long as it is bounded by our chosen loop.

17.1 The long straight current carrying wire revisited

Once we’d learned Gauss’s law, we went back and solved some problems that display a
lot of symmetry and found them to be much easier. In Lecture 15, section 15.2 we used
the Biot–Savart law to find the magnetic field due to a long straight current carrying
wire. We obtained equation (15.2)

B =
µ0I

2πs

for the magnitude of the magnetic field a distance s from the wire. Now let’s do it using
Ampère’s law.

FIGURE 17–1

By the “right hand rule” and by symmetry we know that if we draw an imaginary
amperian loop as a circle of radius s concentric with the wire then the magnetic field
must be constant around the loop and point along the loop, anticlockwise when looking
down the wire with the current flowing towards you. Now the problem becomes a simple
one. Ampère’s law is

∮

B · dℓ = µ0 Ienclosed = µ0 I

and the left hand side simplifies because B is constant and the integral of dℓ around
the loop becomes the circumference of the amperian loop, namely 2πs. Therefore

∮

B · dℓ = B

∮

dℓ = B 2πs
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because B is parallel to dℓ everwhere around the loop so the dot product becomes the
product of the magnitudes of B and dℓ. This leads us to

2πsB = µ0 I

which is

B =
µ0I

2πs

the same result that we obtained using the law of Biot and Savart.

17.2 The solenoid revisited

To illustrate the application of Ampère’s law we return to the solenoid.

FIGURE 17–2

The solenoid is long enough so that we can neglect end effects. We’re going to break
down the problem into regions and finally get the field everywhere. First we determine
the direction of B and then we find its magnitude. Firstly could there be a radial
component, inside or outside the coil?

FIGURE 17–3

No, because if I reversed the current I would reverse the direction (the arrows would
then point inwards). But I could also reverse the current by turning the solenoid upside
down—and that surely could not reverse the field.
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Secondly, is there a magnetic field circulating around the outside of the coil? To find
out I place an amperian loop outside the solenoid, concentric with its axis (figure 17–4)

FIGURE 17–4

Remember, as with a gaussian surface, this is an imaginary construction. In diagrams
do not confuse the amperian loop with an actual current carrying wire.

The field circulating in the direction of the arrow on the loop is expressed as a line
integral

∮

B · dℓ = B ·

∮

dℓ

= B 2πa

because B is constant and the line integral just becomes the circumference of the circle,
radius a. Now by Ampère’s law this is equal to the current poking through the loop. In
the idealisation we make earlier of a “tightly wound coil” this current is zero. But in a
real solenoid, independently of the number of turns per unit length, the current along
the axis is I. Think about it—it has to be or there will be a build up of charge at the
ends of the solenoid. So by Ampère’s law

2πaB = µ0I

and so

B =
µ0I

2πa

so there is a circulating magnetic field, decaying inversely with the distance from the
coil, exactly as if the solenoid were a long straight wire carrying a current I. On the
other hand the circulating magnetic field inside the coil is zero because the amperian
loop “links” no current.
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FIGURE 17–5

Thirdly and finally, the only remaining direction is along the axis of the solenoid, our
z-direction in figure 17–2. To find this component of the field outside consider this
amperian loop.

FIGURE 17–6

The loop links no current and we are interested in the z-component of B. The field
pointing along the upward leg must cancel that along the downward leg because the
integral of B around the loop is zero (it links no current). This requires that if there
is a non zero z-component of the magnetic field it is independent of the distance from
the axis of the solenoid. The field cannot just continue out forever so the z-component
must be zero. Now draw the loop with its downward leg inside the coil.
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FIGURE 17–7

The magnetic field is zero along three of the legs so the field pointing along the left leg
is given by

∮

B · dℓ = B L = µ0Ienclosed

= µ0 n I L

so, cancelling the L as you’d expect, for the z-component of the field we arrive at

Bz =
{

µ0nI inside
0 outside

There is, in addition, the circulating field outside the coil that we found first which has
magnitude µ0I; usually this is negligible compared to Bz because nL ≫ 1.

Note the way I have drawn figure 17–7 (and the other solenoids in this lecture) is
such that the current is flowing clockwise as I look down from the top. The magnetic
field is then pointing in the downward, or negative z-direction, and so carries the unit
vector −̂k . This is consistent with figures 16–5 and 16–7 which show that the sense of
the magnetic field is anticlockwise looking down onto a loop with the “linked” current
flowing towards you; this is also the case in figure 17–7 in which the current linking
the rectangular amperian loop points towards you and hence the line integral is taken
anticlockwise, leading to the magnetic field pointing downwards along the left hand leg
of the loop.
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Lecture 18

In the next two lectures we come to some electrodynamics. This is the subject of time-
varying electric and magnetic fields, and so extends beyond electrostatics and magne-
tostatics. Here I present only an introduction; next year you will learn how to use the
famous “Maxwell equations”.

18.1 Ohm’s law

Currents flow in wires because something is pushing them. This could be a charged
capacitor, an electrochemical battery, a piezoelectric crystal or even a Van der Graaf
generator. The current density produced is very often proportional to the force per unit

charge, f . We write
J = σf

and σ is called the conductivity of the substance carrying the current.

ρ =
1

σ

is called the resistivity. (Do not confuse these with surface and volume charge densites;
most people use the same symbols that I am using for all these.) Most often the force is
produced by an electric field in which case the force per unit charge is E (see Lecture 8)
and

J = σE

is called Ohm’s law. It’s not really a law because it’s essentially never obeyed exactly
but it’s a very good approximation true for many materials at reasonably small fields.
You can also think of Ohm’s law as the first term in a Taylor expansion of the current
density as a function of electric field, so in that sense it is correct to first order in E.

If I have a conductor of cross sectional area A and length L and I apply an electric
potential difference V across its ends, what current will flow?

FIGURE 18–1

If the current is uniformly distributed in the conductor then the current is

I = JA

= σEA

=
σA

L
V

if σ is the conductivity. I can write this as

V = IR
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which is the way that Ohm’s law is usually written. In this case only

R =
L

σA
=

L

A
ρ

is the resistance of the wire. In general R depends on the geometry, the distribution of
current over the cross section and resistivity. But the resistivity is a material property.

18.2 Electromotance

Imagine a wire having some resistance connected to a battery and completing a circuit.
Inside the battery, or source, S, a force per unit charge fs is applied to the electrons.

What keeps them going around the circuit at constant current are electric fields that
are generated by the electrons, and these electric fields prevent the electrons from piling
up anywhere. You have learned that there can be no electric fields in a metal, but that
is only true in electrostatic equilibrium.

FIGURE 18–2

In the circuit in figure 18–2 the force per unit charge at some point in the circuit is

f = fs + E

If there is no “internal resisitance” in the battery then fs is exactly balanced by E inside

the battery,
E = −fs ←− inside the battery (18.1)

If we sum the total force around the circuit, including inside the battery, we may define
a quantity

E =

∮
f · dℓ

=

∮
fs · dℓ

as the electromotance. The second equation follows because f = fs + E and

∮
E · dℓ = 0
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which is true in electrodynamics as long as there are no time varying magnetic fields.

The electromotance, sometimes called the electromotive force or e.m.f., here is the work
done per unit charge by the source (battery). The potential difference between the
terminals a and b is the voltage of the battery,

V = −

∫
b

a

E · dℓ by the definition of electric potential

=

∫
b

a

fs · dℓ by equation (18.1)

=

∮
fs · dℓ (18.2)

= E by equation (18.1)

To get to the third line I can extend the line integral to around the whole circuit because
fs anyway only acts inside the battery. You can see from this why the e.m.f. of a battery
is the same as its voltage. In the case that the battery does have some internal resistance,
call it R, the voltage is

V = E − IR = IR

if R is the resistance of the circuit. So the voltage of a real life battery is usually smaller
than its e.m.f.

18.3 Motional electromotance

We all know how a generator works. I move a wire in a magnetic field and this induces
an e.m.f. that produces a current. Imagine the following simple example.

FIGURE 18–3

A uniform magnetic field pointing away from you exists in the the square region outlined
by a broken line. I pull the loop with a steady velocity v. Charges in the wire experience
a Lorentz force per unit charge

Fmag =
1

q
qv ×B

and the vertical segment of length h acts like a source of electromotive force whose
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electromotance according to equation (18.2) is

E =

∮
Fmag · dℓ

= vBh

since Fmag is parallel to dℓ and the integral only has a contribution along the segment
of length h.

As I pull out the loop the total magnetic flux that penetrates the area enclosed by the
loop is changing because the area of the loop that intersects the region in which the
magnetic field exists is getting smaller. The magnetic flux in this case is

Φ = field× area = Bhx

and the rate of change of flux is

dΦ

dt
= Bh

dx

dt
= −Bhv

= −E

One can show that this is a general result called the flux rule,

E = −
dΦ

dt
(18.3)

Whenever, and for whatever reason, the magnetic flux penetrating any shaped loop
changes, an e.m.f. is generated around the loop. The minus sign tells us that if the
e.m.f. were to cause a current to grow in the loop this current would produce a magnetic
field in the opposite sense of B. That is to say, induced current will flow in such a way
as to oppose the change in flux. This is Lenz’s law. I said “for whatever reason” and
indeed if instead of moving the wire I move the magnetic field the same thing happens—I
get the same e.m.f. and the same induced current. Is this obvious to you? Why? In
the second instance there are no moving charges and hence no Lorentz force. In fact
there are three classes of experiment all conducted by Michael Faraday in the Royal
Institution in London in 1831.

FIGURE 18–4

In each experiment the induced electromotance is given by equation (18.3). It was
the coincidence of experiments 1. and 2. that led Albert Einstein first to think about
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relativity. Faraday’s supposition was, “a changing magnetic field induces an electric
field.”

E =

∮
E · dℓ = −

dΦ

dt

in which E is the induced electric field.

From the definition of magnetic flux,

dΦ = B · da

we can see that ∮
E · dℓ = −

∫
dB

dt
· da

This is the partial derivative with respect to time. The magnetic field also depends on
the coordinate r. If we apply Stokes’s theorem to the left hand side,

∫
S

(∇× E) · da = −

∫
S

dB

dt
· da

and the surface S is any surface bounded by the wire loop, or notional circuit around
which we require the induced electric field, then as we argued in Lecture 16 just before
equation (16.3), since this is true for an infinity of such surfaces, the integrands must
be equal leading us to Faraday’s law of induction,

∇× E = −
dB

dt

which we have already encountered in Lecture 11.
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Lecture 19

19.1 Inductance

We know from the Biot–Savart law that the magnetic field due to a current is propor-
tional to the current. So if a current I flows around a loop of wire, the magnetic flux
penetrating that loop is proportional to I; we write

Φ = LI

and the proportionality constant L is called the inductance of the loop. It depends on
the geometry of the loop and is measured in a unit called a Henry,

1 H = 1 V s A−1 (volt second per amp)

If I change the current in the loop I change the flux and this change of flux induces an
e.m.f. in the loop. By Lenz’s law, which may be paraphrased like this,

“Nature acts to oppose changes in flux”

this e.m.f. acts against the change in current attempting to prevent it from changing.
Mathematically, using the flux rule, this is stated as

E = −
dΦ

dt
= −L

dI

dt
(19.1)

and so here E is sometimes called “back e.m.f.” It can cause a spark in a light switch
when you turn it off because the back e.m.f. attempts to keep the current flowing even
if it has to jump across the contacts in the switch. Every electric circuit has its own
inductance. A good inductor is a coil, or solenoid: its purpose is to resist changes in
current. In this sense it provides inertia; compare with the inertial mass in Newton’s
second law,

force = rate of change of momentum

F =
dp

dt

19.2 Mutual inductance

If you have two loops, loop 1 and loop 2, carrying currents I1 and I2
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FIGURE 19–1

the magnetic field B1 due to loop 1 creates a flux Φ2 that penetrates loop 2,

Φ2 =

∫
a surface bounded

by loop 2

B1 · da2

We don’t need to work this out here; just note that Φ2 is proportional to I1 by the
Biot–Savart law so we can invent a proportionality constant and write

Φ2 = M21 I1

and we call M21 the mutual inductance of the two loops. Conversely of course the
current I2 produces a flux Φ1 through loop 1 such that

Φ1 = M12 I2

and the remarkable fact is that
M12 = M21

To prove this we would need to use the vector potential (see Lorrain, Corson and Lorrain,
section 19.1). But the conclusion is that whatever the shapes of the two loops, if I send
a current I around loop 1 then the flux through loop 2 is the same as the flux through
loop 1 if I drive the same current I through loop 2. This can be very useful in solving
certain problems.

19.3 Magnetic energy and momentum

An amount of work has to be done to establish the magnetic field in a circuit. This is
in addition to any work that is done in heating the wires by current. The energy I am
referring to is fully recoverable when the circuit is switched off. So when I turn on a
circuit I have to do work against the back e.m.f. and this amount of work is

W

Q
= −E

acting on a charge Q. Hence the rate of doing work is

dW

dt
= −E

dQ

dt
= −E I

= L I
dI

dt

where I have used equation (19.1) after noting that I is the quantity of charge passing
in unit time. Now if I integrate this from zero current to the final steady current, which
I shall call I, I get

W =
1

2
LI2
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where L is the inductance of the circuit. Where is this energy stored? One answer to
this is arrived at by showing that

W =
1

2µ0

∫
all

space
B2 dτ

where B is the magnetic field due to the current I; but you need to use the vector
potential to prove it.

Evidently energy is stored in the magnetic field itself. This is quite analogous to what
we learned in Lecture 12, namely that the energy stored in the electric field is

W =
1

2
ǫ0

∫
all

space
E2 dτ (12.5)

The magnetic field also stores angular momentum as I can demonstrate to you now.
Consider this experimental arrangement: a solenoid producing a uniform magnetic field
inside and (approximately) zero field outside, encircled by a ring of line-charge, for
example a charged plastic hula-hoop somehow suspended so that it is able to rotate
freely.

FIGURE 19–2

Now I cut off the current in the coil. What happens? Looking down the axis, the set-up
looks like this,
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FIGURE 19–3

A magnetic field B0 exists in the shaded region and points towards you (upwards in
figure 19–2 as the current is flowing anticlockwise when look down the coil). When the
current is turned off, the changing magnetic field induces an electric field as in Faraday’s
experiment number 3 in figure 18–4, Lecture 18. This electric field E according to
Faraday’s law is given by ∮

ring
E · dℓ = −

dΦ

dt
= −πa2

dB

dt

because flux is magnetic field times area and the field only exists in the region of radius
a in figure 19–3. The element of length dℓ carries a charge λdℓ where λ is the charge
per unit length. The induced electric field exerts a force acting upon dℓ such that it
experiences a torque

dT = r × Eλdℓ

whose magnitude is
dT = bλEdℓ

since b is the length of the lever arm r, that is, the radius of the ring. The total torque
on the ring is

T =

∮
ring

dT

= bλ

∮
ring

Edℓ

= −bλπa2
dB

dt

Now torque is rate of change of angular momentum,† so

T =
dL

dt
where L is the angular momentum. We have by integration

L =

∫
Tdt

= −πa2bλ

∫
0

B0

dB

= πa2bλB0

† This is the circular motion equivalent of Newton’s second law, namely force equals rate
of change of linear momentum.
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in which B0 is the magnetic field inside the solenoid before the current is switched off.

So as I turn off the current to the coil the ring starts to rotate anticlockwise if λ is
positive. There are two curious features to this experiment.

1. There is no magnetic field outside the solenoid. How does the ring detect the collaps-
ing magnetic field inside the coil? Well, it’s the induced electric field that produces
the torque on the charged ring. Actually note for next year that whereas there is no
magnetic field outside the coil the vector potential is not zero. You will encounter a
simular situation when you study the Aharonov–Bohm effect in quantum mechanics.

2. What about the principle of conservation of angular momentum? Clearly after turn-
ing off the current the system possesses angular momentum as the ring is spinning;
but before that the ring is not spinning so from where does that angular momen-
tum arise? The conclusion has to be that there is angular momentum stored in the
magnetic field which is transferred to the ring when the field collapses.



4CCP1501 Lecture 20 Page 1 of 9 (8 December 2017)

Lecture 20

In this lecture we study a simple electrical circuit. The principal reason is to learn about
a non mechanical resonant device and the learn the lesson, “the same equations have
the same solutions”.

We will discuss an electrical circuit called LCR which is a resistor, an inductor and a
capacitor connected in series to an AC power supply. This is a resonant circuit so we
are to recall what we learned about resonance in Lecture 4. First we study the three
components separately.

20.1 The R-circuit

FIGURE 20–1

In the circuit in figure 20–1, E0 is the peak e.m.f. (voltage); ω is the driving angular
frequency; t is time; R is the resistance in ohms. If I is the current, then

I =
E0
R

sinωt (20.1)

by Ohm’s law. The current is in phase with the voltage

FIGURE 20–2

20.2 The C-circuit

FIGURE 20–3
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The capacitance is

C =
Q

V

so the voltage is
Q

C
= E0 sinωt (20.2)

Current is

I =
dQ

dt
= CE0ω cosωt

That is

I =
E0

1/ωC
sin(ωt+

1

2
π) =

E0
XC

sin(ωt+
1

2
π)

so the current leads the voltage by a phase angle of 90◦ as shown in figure 20–4.

XC =
1

ωC

is called the capacitive reactance.

FIGURE 20–4

20.3 The L-circuit

FIGURE 20–5

An inductor is a coil that produces a back e.m.f. as a magnetic field is grown inside
the coil. The back e.m.f. is proportional to the rate of increase of current, the constant
of proportionality is the inductance L. The back e.m.f. is −Lİ by Lenz’s law and by
Kirchhoff’s loop law the back e.m.f. is −E , then,

E0 sinωt = L
dI

dt
(20.3)
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that is,
dI

dt
=

E0
L

sinωt

and by integration,

I = − E0
ωL

cosωt

=
E0
ωL

sin(ωt− 1

2
π)

=
E0
XL

sin(ωt− 1

2
π)

Now the voltage leads the current, or if you prefer the current trails the voltage.

FIGURE 20–6

and
XL = ωL

is called the inductive reactance.

20.4 The LCR circuit

FIGURE 20–7

We now combine equations (20.1), (20.2) and (20.3)

L
dI

dt
+RI +

Q

C
= E0 sinωt

and since

I =
dQ

dt
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this is

L
d2Q

dt2
+R

dQ

dt
+

Q

C
= E0 sinωt

or
d2Q

dt2
+

R

L

dQ

dt
+

1

CL
Q =

E0
L

sinωt

Compare this with the equation in Lecture 4, p. 1, which is the equation of motion of a
damped mechanical oscillator,

d2x

dt2
+ 2Zmω0

dx

dt
+ ω2

0
x =

F0

m
sinωt

In the case of the LCR circuit we will write

d2Q

dt2
+ 2Zω0

dQ

dt
+ ω2

0
Q =

E0
L

sinωt

and we use the symbol Zm for the damping ratio of the mechanical device and Z for
the damping ratio of the LCR circuit.

The following table shows the correspondence between the parameters of the two devices.

damped mass and spring LCR circuit

inertial element m L

stiffness k 1/C

damping coefficient b R

damping ratio 1

2
b/
√
mk 1

2
R
√

C/L

static amplitude As F0/k E0C

quality factor Q
√
mk/b 1

R

√

L/C

natural frequency ω0

√

k/m 1/
√
LC

Amax = AsQ F0/bω0 E0/Rω0

We can use this table as a “dictionary” to translate the solution from Lecture 4 into the
physics of the present situation. There, we had

x = A sin(ωt− φ)

with
A

As

=
1

√

(

1− ω2

ω2

0

)2

+
(

2Zm
ω
ω0

)2



4CCP1501 Lecture 20 Page 5 of 9 (8 December 2017)

and

As =
F0

k

For convenience in what follows, we will shift the phase and write for the time depen-
dence of the charge, Q,

Q = −A cos(ωt− φ)

This is of course just as good a solution of the differential equation for Q. The shift of
phase in our choice of solution of the differential equation does not affect the amplitude,
so we still have A/As as above, but after substituting Z for Zm and using As = E0C.
To obtain the current, we differentiate the charge with respect to time,

I =
dQ

dt
= Aω sin(ωt− φ)

= I0 sin(ωt− φ) (20.4)

with†
I0 =

ωE0C
√

(

1− ω2

ω2

0

)2

+
(

2Z ω
ω0

)2

and after a lot of easy algebra, and using Z = 1

2
R
√

C/L and ω0 = 1/
√
LC, this turns

into

I0 =
E0

√

(

ωL− 1
ωC

)2

+R2

(20.5)

The phase angle turns out to be‡

φ = arctan
ωL− 1

ωC
R

= arctan
reactance

resistance
(20.6)

in which by “reactance” I mean the the inductive reactance take away the capacitive
reactance. Now you are going to see why I have used new symbols Zm and Z for
the damping ratios (as well as Q for quality factor, so as not to confuse it with Q for
charge)—everybody writes equation (20.5) as

I0 =
E0
Z

† I chose the − cos solution so that we now have E = E0 sinωt and I = I0 sin(ωt− φ) and
this instantly identifies φ as the phase difference between the current and the voltage,
which we what we want to know.

‡ Compare with page 6 of your additional material on KEATS on simple harmonic motion
after changing x = A sin(ωt − φ) into x = −A cos(ωt − φ). In that case tanφ =
(r2 − 1)/2rZm with r = ω/ω0; then use the dictionary.
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That is, the peak current equals the peak voltage divided by, not resistance as in a
direct current circuit but, impedance. Impedance is always given the symbol Z. The
impedance of the LCR circuit, according to equation (20.5) is given by

Z2 =

(

ωL− 1

ωC

)2

+R2

and we remember that ωL is the inductive reactance and 1/ωC is the capacitive reac-
tance. So

Z2 = (XL −XC)
2 +R2

= (reactance)2 + (resistance)2

Depending on the relative sizes of the inductive and capacitive reactances, the total
reactance may be positive or negative. We must therefore interpret Z2 as the “square”

of a complex number:†
Z2 = Z∗Z = |Z|2

and
Z = R + i (XL −XC)

is called the complex impedance of the LCR circuit. We can also write this as

Z = |Z| eiφ

and plot Z in the Argand diagram

FIGURE 20–8

We then see that the phase is exactly as in equation (20.6), namely,

tanφ =
reactance

resistance

This is very important because we now see that however difficult the maths has been in
all this development, for whatever LCR circuit we construct once we know the resistance,

† We need to do this because we wish to write Z = a+ b, say, that is the sum of a reactive
part and a resistive part; while what we have is Z2 = A2 +B2, say. If Z is real, then we
have Z2 = (a+ b)2 = a2 + b2 +2ab which is not in the form a2 + b2 so this doesn’t work.
But if Z is complex we can write Z = a+ib and then Z2 = (a−ib)(a+ib) = a2+b2 as we
require. So we need to insist that either the reactance or the resistance is “imaginary”.
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capacitance and inductance of the three elements and the driving angular frequency, ω,
of the a.c. power supply, then we can easily calculate the reactance and then with a
diagram like figure 20–8, we have a simple graphical construction to find the impedance
and the phase difference—that is, whether and by how much the current leads or trails
the voltage in our LCR circuit.

We now write down the oscillating e.m.f. as in figure 20–7,

E = E0 sinωt (20.7)

= Im E0 eiωt

in which Im means “imaginary part of”, and so the oscillating current in the LCR
circuit is

I =
E
Z

= Im
E0
|Z|e

−iφ eiωt

=
E0
|Z| sin(ωt− φ)

= I0 sin(ωt− φ) (20.4)

which is the same as equation (20.4). This is why we wanted a “sine” solution for
the current and hence needed a “minus cosine” solution for the charge at the top of
page 5. By comparison with equation (20.7), the angle φ determines the angle by which
the current trails (or leads if φ < 0) the voltage. We can think of this as arising in a
diagram like figure 20–9 which provides a graphical means to find the phase relation
between voltage and current in an LCR circuit, given the values of L, R and C.

FIGURE 20–9

This illustrates how the phase is zero in a purely resistive circuit as in figure 20–2. The
phase is positive or negative depending whether the reactance is positive or negative,
or in other words, whether the inductive reactance is greater or less than the capacitive
reactance. In a purely capacitive circuit we see that φ = − 1

2
π = −90◦; and in a
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purely inductive circuit we see that φ = + 1

2
π = +90◦ which is entirely consistent with

figures 20–4 and 20–6.

The LCR circuit is a resonant oscillator just as is its mechanical counterpart. The
angular frequency ω0 is the natural frequency of the undamped circuit, that is a circuit

with R = 0, so ω0 is the solution of the equation†

ωL− 1

ωC
= 0

that is,

ω0 =
1√
LC

The quality factor is

Q =
ω0L

R
=

1

R

√

L

C

and the static amplitude is As = E0C which is the charge stored in the capacitor if
the frequency is zero so that the circuit becomes a DC circuit. A circuit with a high
Q has a narrower resonance peak or “bandwidth”. This is how a radio is tuned. The
capacitance of a resonant circuit is varied until the resonant frequency matches the
frequency of the signal being sought. By exploiting a narrow resonance peak, signals at
nearby frequencies do not affect the current in the circuit.

Figure 20–10 shows a typical resonance and power output curve for an LCR circuit.
You should be able to identify As and Amax in the left hand graph. In the right hand
graph, ∆ω is the bandwidth. There’s a good wikipedia page on the LCR circuit
(en.wikipedia.org/wiki/RLC circuit). Note that they call it an RLC circuit. Also
in your textbooks, so when you look it up in the index, try under “R” and “C” as well
as “L”.

† The reason for this is that I am looking for the value of ω that maximises the peak
current in equation (20.5) in the absence of damping, that is, R = 0. So I need to
minimise the denominator. Actually it is smallest when it is zero. And this means that
at resonance the undamped oscillator has infinite amplitude. This is also the case for the
mass on the spring as we see in the notes on KEATS on SHM. Of course in real life there
is no such thing as a totally undamped oscillator—there is always some damping—but
at resonance the amplitude can be very large in a high Q LCR circuit (or any other
oscillator with a large quality factor).



4CCP1501 Lecture 20 Page 9 of 9 (8 December 2017)

FIGURE 20–10
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4CCP1501 Problem class 1

Do these problems in class with the help of tutors

C1.1 Two waves are travelling along a stretched string in the same direction. They are
out of phase by an angle 1

2
π radians. Each wave has an amplitude of 0.04 m. Find

the amplitude of the resultant wave.

C1.2 Somewhere out at sea the waves happen to be described as a superposition of these
two wavefunctions,

y1 = 3.0 cos(4.0x− 1.6t)

y2 = 4.0 sin(5.0x− 2.0t)

where x is in meters, and t is in seconds. Find the height of the water above (or
below) the mean level at these points and times:

a. x = 1, t = 1

b. x = 1, t = 0.5

c. x = 0.5, t = 0

∗C1.3 Two waves are described by the wave functions

y1 = 5 sin(2x− 10t)

y2 = 10 cos(2x− 10t)

with x in meters and t in seconds. When these are superposed the resulting wave
can be described as a single sine function. Find what this function is and calculate
the amplitude and phase of the combined wave.

[HINT: use the identity sin(a+ b) = sin a cos b+ cos a sin b]
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4CCP1501 Problem class 1—solutions

C1.1 Use the formula on page 5 of Lecture 2:

amplitude = 2A cos
1

2
φ

This results in an amplitude of 0.0566 m

C1.2 No need to do any algebraic manipulation, just add y1 to y2 in the calculator. Neg-
ative numbers correspond to the level being below the mean.

a. −1.65 m

b. −6.02 m

c. 1.15 m

∗C1.3 The new wave must have the same wavevector and angular frequency of the two
combining waves as they are the same for each. So we write

5 sin(2x− 10t) + 10 cos(2x− 10t) = A sin(2x− 10t+ φ)

and try and find A and φ. First use the identity sin(a + b) = sin a cos b + cos a sin b
to write

A sin(2x− 10t+ φ) = A sin(2x− 10t) cosφ+ A cos(2x− 10t) sinφ

This will work as long as we can find a solution to the simultaneous equations

5 = A cosφ

10 = A sinφ

Squaring and adding we get 52 +102 = A2 which means that A = 11.2 m. Dividing,
we get tanφ = 10/5 = 2 so that φ = 63.4◦. These are the amplitude and phase angle
that we are looking for. And so the combined wavefunction is

y = 11.2 sin

(

2x− 10t+ 63.4×
2π

360

)
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4CCP1501 Problem class 2

Do these problems in class with the help of tutors

C2.1 A bunch of bananas is attached to the lower end of a vertical spring in a greengrocer’s
shop. The spring has a stiffness of 16 N m−1. The bananas are pulled down to a
distance 0.2 m from equilibrium, released and thereby set into oscillatory motion.
The maximum speed of the bananas is 0.4 m s−1. What is the weight of the bananas
in newtons?

Take the acceleration due to gravity as g = 9.8 m s−1.

C2.2 A 1 kg glider attached to a spring with force constant 25 N m−1 oscillates on a
frictionless air track. At t = 0 the glider is released from rest at x = −0.03 m (that
is, the spring is compressed by 0.03 m).

a. Find the period of the glider’s motion

b. Find the maximum values of its speed and acceleration

c. Find expressions for the position, velocity and acceleration as functions of time.

∗C2.4 Damping is negligible for a 0.15 kg mass hanging from a light spring of spring rate
6.3 N m−1. A sinusoidal force with amplitude 1.7 N drives the mass into forced
oscillations. At what driving frequency will the mass oscillate with an amplitude of
0.44 m? (You should actually be able to find two possible driving frequencies that
give the same amplitude of vibration.)
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4CCP1501 Problem class 2—solutions

C2.1 The maximum speed of a simple harmonic oscillator is

vmax = Aω0 = A

√

k

m

We are told that A = 0.2 m, k = 16 N m−1 and vmax = 0.4 m s−1. Thus the mass of
the bananas is

m =
kA2

v2
max

= 4 kg

and so their weight is
Fg = mg = 39.2 N

C2.2 We are given that

m = 1 kg, k = 25 N m−1, A = 0.03 m

The boundary condition is

At t = 0, x = −0.03 m

a.

ω0 =

√

k

m
= 5 rad s−1

period T =
2π

ω0

= 1.26 s

b.
vmax = Aω0 = 0.15 m s−1

amax = Aω2

0
= 0.75 m s−2

c. Because x = −0.03 m and v = 0 at t = 0 the solution we want is x = −A cosω0t,
which for the given values of the constants is

x = 0.03 cos (5t+ π)

Therefore the formulas we are asked for are

v =
dx

dt
= −0.15 sin (5t+ π)

a =
d2x

dt2
= −0.75 cos (5t+ π)

with x in meters, v in m s−1and a in m s−2.
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∗C2.3 We use equation (4.1) from Lecture 4, but neglecting damping, Z = 0,

A = As

1
√

(

1− ω2

ω2

0

)2

= As

1

±

(

1− ω2

ω2

0

)

This leads to
As

A
= ±

(

1−
ω2

ω2

0

)

which is rewritten as
ω2

ω2

0

= 1±
As

A

where ω is the driving frequency, ω0 is the natural frequency and As is the “static
amplitude”. We also have

ω2

0
=

k

m

and

As =
F0

k

where F0 is the amplitude of the driving force. Therefore

ω2 = ω2

0

(

1±
As

A

)

=
k

m

(

1±
F0

kA

)

=
k

m
±

F0

mA

=
6.3

0.15
±

1.7

0.15× 0.44

giving either ω = 4.030 radians s−1 or ω = 8.232 radians s−1. There are thus two fre-
quencies which will produce the required amplitude: f = 0.641 Hz and f = 1.310 Hz.
Actually you can see why this is by looking at the resonance curve. If you draw a hori-
zontal line at some amplitude, you see that it intersects the curve twice indicating that
there are two frequencies that give rise to that particular amplitude.
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4CCP1501 Problem class 3

Do these problems in class with the help of tutors

C3.1 Two slits are separated by 0.32 mm. A beam of coherent light of wavelength λ =

500 nm impinges on the slits and produces an interference pattern. How many bright

fringes are observed in a range of angles between −30◦ and +30◦?

C3.2 A Young’s double slit experiment is made using a blue-green argon laser. The slits

are separated by a distance of half a millimeter and the screen is placed 3.3 m away

from the slits. The first bright fringe is located 3.4 mm from the centre of the

interference pattern. Find the wavelength of the laser light.

∗C3.3 A tanker dumps one cubic metre of oil into the ocean and this spreads evenly into

a slick on a perfectly calm sea. Viewed from above using a light beam of variable

wavelength, it is found that a first order maximum appears in the brightness of

reflected light at a wavelength of 500 nm. You are given that the refractive index of

the oil is 1.25 and that this is smaller than the refractive index of seawater. Calculate

the area of the oil slick.
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4CCP1501 Problem class 3—solutions

C3.1 The bright fringes are observed at angles θ given by the formula

d sin θ = mλ

and so the number of fringes in the range 0 < θ < 30◦ is

m =
d sin θ

λ
=

3.2× 10−4 sin 30◦

500× 10−9
= 320

There is an additional 320 at negative angles and one central bright fringe, so the

total is 641 bright fringes.

C3.2 Bright fringes are found at distances

y =
λL

d
m

from the centerline. We are told the position of the first bright fringe and so we have

m = 1 and

λ =
yd

L
=

3.4× 10−3
· 0.5× 10−3

3.3
= 515 nm

∗C3.3 Because the three media, air, oil, seawater have increasingly larger refractive indices,

the light reflected from both surfaces of the oil film will be phase changed by 180◦.

This gives a path difference of 2t if t is the thickness of the film. For a maximum in

intensity of the reflected light we require

2t =
mλ

n

where n = 1.25 is the refractive index of the oil. Since we are told this is a first order

maximum, m = 1 and

t =
λ

2n
= 200 nm

The volume of the oil is

1 m3 = 200 nm× area

which leads to an area of 5 square km.
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4CCP1501 Problem class 4

Do these problems in class with the help of tutors

C4.1 I have two cylindrical glass rods of radius 10 mm and length 0.1 m.

a. The density of this glass is 2200 kg m−3. Calculate the mass of each rod.

b. The molar mass of SiO2 (glass) is 28 + 2× 16 = 60 and each SiO2 molecule has
4 + 2 × 6 = 16 valence electrons. How many valence electrons are there in each
rod?

Now I rub the rods with a silk cloth until each has acquired a charge of 100 nC
(1 nC = 10−9 C).

c. The charge on one electron is −e = −1.602× 10−19 C. How many electrons have
I “rubbed off” each rod? What is this as a fraction of the number of valence
electrons you have just found?

d. If I hold these rods 1 m apart, what is the electrostatic force of repulsion between
them? What is their gravitational force of attraction? What is the ratio of the
two?

C4.2 Using the rules for the drawing of field lines, draw field lines and mark them with
arrows for two point charges carrying charges of +2q and −q and separated by a
distance d.

C4.3 Eight charges of q = 1 × 10−3 C each are placed at the corners of a cube having a
side of a = 1 m. A test charge of q0 = 0.1× 10−3 C is placed in the centre of one of
the faces. Find the magnitude and direction of the force it experiences due to the
eight charges. [HINT: exploit the symmetry of the problem.]
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4CCP1501 Problem class 4—solutions

C4.1

a. mass = π × (0.01)2 × 0.1× 2200× 103 = 69 g

b. molar mass = 60 gram per gram-mole

⇒ number of moles = 69/60 = 1.15

⇒ number of SiO2 molecules = 1.15× 6.02× 1023 = 6.92× 1023

⇒ number of valence electrons = 16× 6.92× 1023 = 1.1× 1025

c.

100 nC

e
=

10−7

1.602× 10−19
= 6.24× 1011 electrons

Fraction is 6.24× 1011/1.1× 1025 = 6× 10−14

d. Coulomb force:
Fe = 9× 109 × (10−7)2 = 9× 10−5 N

Gravitational force:

Fg = 6.7× 10−11
× (0.069)2 = 3.2× 10−13 N

Ratio is 0.28× 109
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C4.2 Consult the following figure taken from a textbook.
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C4.3 Refer to the figure below.

The forces due to the charges in the upper face cancel each other and the forces due
to charges in the lower face are equal in magnitude and sum to give a resultant force
pointing perpendicular to the upper face. Its magnitude is four times the force from one
of the charges, say the front right, multiplied by cos θ.

F = 4

(

9× 109
︸ ︷︷ ︸

1/4πǫ0

×
qq0
ℓ2

cos θ

)

By examining the right hand figure we see that tan θ = 1
√

2
and ℓ2 = 3

2
a2 and so

F = 4× 9× 109 ×
qq0
3

2
a2

cos θ

= 4× 9× 109 × 0.1× 10−3
× 10−3

×
2

3
cos 0.6155

= 1.9603× 103 [N]

It is useful to get an idea of the magnitudes of forces and charges. Here, we see that
charges on the order of µC acting over distances of the order of metres give rise to
forces of the order of kilonewtons (kN). These are large forces; remember one Newton
is roughly the force due to gravity exerted on your hand when you hold an apple in
it. If you want to buy a tensile testing machine for ripping apart specimens of steel
with diameters of about 1 cm you can get one that can exert a pulling force of nearly a
thousand kN. From that perspective question T6.1 in your tutorials, based on one first
posed by Richard Feynman, is particularly astonishing.
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4CCP1501 Problem class 5

Do these problems in class with the help of tutors

C5.1 The electric field inside a large parallel plate capacitor is 107 N C−1. Calculate the

total flux penetrating the following imaginary surfaces placed within the capacitor.

a. A square of side 1 mm aligned parallel to the plates

b. The same square having its normal tilted at 30◦ with respect to the normal to

the capacitor plates

c. A hemispherical surface of radius 1 mm with its circumference lying parallel to

the plates

d. The same hemispherical surface tilted at 90◦ so that its circumference lies in a

plane perpendicular to the plates.

C5.2 In your lecture notes you have calculations of the electric field due to an infinite line

of uniform charge density λ C m−1, and an infinite sheet of uniform charge density

σ C m−2. Use Gauss’s Law and suitable Gaussian surfaces to solve these problems

again and confirm that you get the same results as in your notes.
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4CCP1501 Problem class 5—solutions

C5.1

a. E = 107, A = 10−6, Φ = EA = 10 NC−1m2

b. E = 107, A = 10−6 cos 30◦ = 10−6
√
3/2, Φ = EA = 8.66 NC−1m2

c. E = 107, A = π × 10−6, Φ = EA = 31.4 NC−1m2

d. zero

C5.2 Please consult your lecture notes where you will find all these problems solved.
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4CCP1501 Problem class 6

Do these problems in class with the help of tutors

C6.1 A solid spherical conductor has radius a and carries a charge Q. It is enclosed by a
very thin concentric spherical shell of conductor of radius b carrying a charge −Q.

a. Use Gauss’s Law to calculate the electric field everywhere in this example and
plot the field as a function of distance from the centre of this object.

b. Calculate the electric potential difference between a and b.

c. Hence calculate the capacitance of this object.

[There can be no charge inside a conductor: all its charge must be found at its
surface.]

∗C6.2 We have learned that the curl of the electrostatic field is zero and hence the electric
field is special in that there are three equations relating the three components of the
vector field. For example consider the following two possible forms for an electrostatic
field.

a. E = C
(

y2 ı̂ + (2xy + z2) ̂ + 2yẑk
)

b. E = Cŷı which is a field pointing everywhere in the x-direction whose magnitude
is proportional to how far you are along the y-axis. Sketch this field with arrows.

Which, if any, of these is a legitimate electric field? Can you see from your sketch
why b. is not?
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4CCP1501 Problem class 6—solutions

C6.1 I’ll leave you to make the sketch plot in part a.

a.
0 < r < a , E = 0

a < r < b , E =
1

4πǫ0

Q

r2
[N C−1]

r > b , E = 0

b.

V (a)− V (b) = −

∫ a

b

E dr

= −

∫ a

b

1

4πǫ0

Q

r2
=

[

1

4πǫ0

Q

r

]a

b

=
1

4πǫ0
Q

(

1

a
−

1

b

)

=
1

4πǫ0
Q

b− a

ab
volt [N m C−1]

c.

C =
Q

∆V

= 4πǫ0
ab

b− a
farad [C V−1]

∗C6.2 The answer is that a. is a legitimate electric field, while b. is not. You can probably
see when you sketch the vector field of b. that it looks like it has a non zero
“circulation”.

a. We resolve the vector E into its components,

E = Ex̂ı + Ey ̂ + Ezk̂

and so, by inspection,
1

C
Ex = y2

1

C
Ey = 2xy + z2

1

C
Ez = 2yz

Now we check the derivatives,

1

C

(

∂Ez

∂y
−

∂Ey

∂z

)

= 2z − 2z = 0

1

C

(

∂Ex

∂z
−

∂Ez

∂x

)

= 0− 0 = 0

1

C

(

∂Ey

∂x
−

∂Ex

∂y

)

= 2y − 2y = 0



4CCP1501 Problem class 6 Page 2 of 2

so indeed for this vector field ∇× E = 0.

b. Now we do the same and find

∂Ez

∂y
−

∂Ey

∂z
= 0

∂Ex

∂z
−

∂Ez

∂x
= 0

∂Ey

∂x
−

∂Ex

∂y
= −1

so not all components of the curl are zero—the z-component is −1. So for this
field ∇× E 6= 0.



4CCP1501 Problem class 7 Page 1 of 1 (12 November 2017)

4CCP1501 Problem class 7

Do these problems in class with the help of tutors

C7.1 A uniform magnetic field, B, points in the z-direction. A particle of mass m and
charge q is travelling at a constant velocity v in the x-direction when it enters the
magnetic field.

a. Explain why the particle moves in a circle due to the magnetic field.

b. Looking so that the magnetic field is pointing away from you, if q is positive is
the motion of the particle clockwise or anticlockwise?

c. Use the equation for the Lorentz force to show that the magnitude of the magnetic
force is qvB.

d. Since the particle is travelling in a circle it is accelerating. Equate the force with
the mass times the centripetal acceleration v2/r, where r is the radius of the
particle’s orbit, and hence show that the radius is r = mv/qB.

e. Find the angular frequency ω of the particle’s orbit. This is called the “cyclotron
frequency.” Find the period, T , of the orbit.

f. Suppose that the particle entered the magnetic field in a direction slightly inclined
to the x-direction. Describe qualitatively the shape of the path it will take.

g. Suppose that in addition to the uniform magnetic field B pointing in the z-
direction, there is also a uniform electric field E pointing in the y-direction. If
the particle is released from rest, describe qualitatively the path that it takes.
Sketch the path.

C7.2 (After Griffiths) In 1897 J. J. Thomson “discovered” the electron by measuring the
charge-to-mass ratio of “cathode rays” (actually streams of electrons with charge q
and mass m) as follows.

a. First he passed the beam through uniform crossed electric and magnetic fields E
and B (mutually perpendicular and both of them perpendicular to the beam),
and adjusted the electric field until he got zero deflection. What then was the
speed of the particles in terms of E and B?

b. Then he turned off the electric field, and measured the radius of curvature, r, of
the beam, as deflected by the magnetic field alone. In terms of E and B, what
is the charge-to-mass ratio, q/m, of the electrons?
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4CCP1501 Problem class 7—solutions

C7.1

a. The magnetic force is Fmag = qv×B and so is at all times perpendicular to both
the velocity and the field. This implies that the magnetic force is equivalent to a
centripetal force which drives the particle into a circular orbit. In a circular orbit
the velocity is always a tangent vector to the circle and the centripetal force
is directed along the radius vector and is hence perpendicular to the velocity.
Both these vectors are perpendicular to the magnetic field if the field vector is
perpendicular to the plane of the circular orbit. This is how a cyclotron works.

b. Anticlockwise.

c. Fmag = qv ×B and so the magnitude is Fmag = qvB.

d. Fmag = qvB = mv2/r, hence r = mv/qB.

e. ω = v/r = qB/m. T = 2π/ω = 2πm/qB.

f. The particle will describe a helix whose axis is the z-direction.

g. When the particle is released it will feel no magnetic force as its velocity is
zero, and it will be accelerated along the y-direction by the electric field. But
it immediately acquires a velocity in the y-direction so that the magnetic field
begins to deflect it into the x direction. As the speed increases, so does the
magnetic force which increases while the electric force remains constant. As the
particle describes a curved trajectory it reverses the direction of travel along the
y-direction so that it is now travelling against the electric field and so it begins
to slow down. The magnetic force then weakens so that the particle slows down
and comes to rest back on the x-axis but displaced along it. It has thereby
completed a semi-eliptic orbit and returned stationary at the x-axis, displaced a
certain distance along x; after which it repeats the above process. This is called
“cycloid motion.” (See Griffiths, example 5.2) It is actually the path traced out
by a point on the rim of a bicycle wheel.

C7.2

a. F = q(E+ v ×B) = 0 ⇒ E = vB ⇒ v = E/B

b. Use the result of C7.1d, r = mv/qB and v = E/B from C7.2a. Hence q/m =
v/rB = E/B2r
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4CCP1501 Problem class 8

Do these problems in class with the help of tutors

C8.1 The dipole fields due to electric and magnetic dipoles are

Edip(r) =
1

4πǫ0

1

r3
(3 (p · r̂) r̂− p)

and

Bdip(r) =
µ0

4π

1

r3
(3 (m · r̂) r̂−m) .

These formulas are independent of the choice of axes. But taking the z direction
to be along the axis of the dipole use these to obtain the dipole field in the special
cases that the field point r is (i) along the axis, and (ii) in the plane of the dipole.
Compare these answers with the results obtained in your lecture notes.

∗C8.2 (After Griffiths) A square loop of wire carries a steady current I. The sides of the
square have length 2R. Calculate the magnetic field B at the mid point in the plane
of the loop. [HINT: look in Lecture 15, p. 4.]

a. Now find B at the centre of a regular n-sided polygon, for which R is the perpen-
dicular distance from the centre to one of the sides, and check that your answer
is consistent with what you got in a. for the case n = 4.

b. Using your formula obtained in b., take the limit as n → ∞. You will need to
use the rule of L’Hopital. Confirm that the magnetic field you obtain is that of
a circular loop in your lecture notes.
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4CCP1501 Problem class 8—solutions

C8.1

(i) p = p̂k , r̂ = k̂ , p · r̂ = p

Edip =
1

4πǫ0

1

r3
(3p̂k − p̂k )

=
1

4πǫ0

1

r3
2p̂k

Bdip =
µ0

4π

1

r3
2mk̂

b(ii) p = p̂k , p · r̂ = 0

Edip = −
1

4πǫ0

1

r3
p̂k

Bdip = −
µ0

4π

1

r3
mk̂
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∗C8.2 At the field point at the centre of the square, we calculate the magnetic field due to
the lower, horizontal segment of current.

We use our equation from Lecture 15, just after figure 15–3, p. 4:

B =
µ0

4π

I

R
(sin θ2 − sin θ1)

with θ2 = −θ1 = θ = 45◦ = π/4. The field at the centre is four times this—an
equal contribution coming from all four sides,

B = 4×
µ0

4π

I

R
× 2 sin

π

4
=

µ0I

π

√
2

R

a. The contribution from n sides of the polygon is

B = n×
µ0

4π

I

R
× 2 sin

π

n
=

µ0

2π

I

R
n sin

π

n

and you can see that for n = 4 the first expression is exactly that you obtained
for the square.

b. As n → ∞ we need
lim
n→∞

n sin
π

n
= ∞ · 0

an “indeterminate form”. We write this as

lim
n→∞

sin(π/n)

1/n
=

0

0

and differentiate top and bottom with respect to n,

(−π/n2) cos(π/n)

−1/n2
= π cos

π

n

−→ π as n → ∞
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Hence

lim
n→∞

µ0I

2π

1

R
n sin

π

n
= B =

1

2
µ0

I

R

which is consistent with equation (15.3) in Lecture 15, p. 6, in the limit that
z = 0, that is, in the centre of the loop.
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4CCP1501 Problem class 9

Do these problems in class with the help of tutors

C9.1 A piece of wire having a resistance R = 2Ω (ohm) is bent into a ring enclosing an
area of 8× 10−4 m2. It is oriented so that the plane of the ring is perpendicular to a
magnetic field which increases at a fixed rate from 0.5 T to 2.5 T in a time interval
of one second. Find the induced current in the wire.

C9.2 A particle with mass m = 2× 10−16 kg and a charge q = 30 nC (nano-Coulomb) is
accelerated from rest in a potential difference ∆V . It emerges from the accelerator
into a region free of electric field but containing a uniform magnetic field of strength
0.6 T (tesla) pointing perpendicular to the particle’s velocity. The particle moves in
a circular orbit and returns to the point where it first emerged from the accelerator.
In doing so its circular orbit encloses a magnetic flux of 15× 10−6 Wb (weber).

a. Calculate the particle’s orbital speed.

b. Find what was the accelerating voltage, ∆V .

C9.3 A long solenoid has radius a. An alternating current is passed through the coils so
that the magnetic field inside the solenoid is

B(t) = B0 sin (2πνt)

as a function of time, t; ν is the frequency of the a.c. supply. A circular wire loop of
radius r is placed concentric with the axis of the solenoid. In terms of the radius, r,
the amplitude and frequency of the magnetic field, B0 and ν, and the electrical
resistivity, ρ, of the wire in the loop find an expression for the induced current

density, J , in the wire as a function of time if the radius of the loop is

a. r < a, that is, inside the coil;

b. r > a, that is, outside the coil. Since there is no magnetic field outside the coil,
comment on how an e.m.f. can be generated in this case.

Check that both your formulas give the same result for r = a and plot the amplitude
of the current density J as a function of the radius r of the loop.

[For the resistance of the wire, use R = ρL/A where L is the length of the wire, and
A its cross sectional area.]
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4CCP1501 Problem class 9—solutions

C9.1 The induced e.m.f. is given by the flux rule,

−E =
dΦ

dt

and since the field increases at a fixed rate, we can write this as

−E =
∆Φ

∆t
=

(2.5− 0.5)× area

one second

=
2× 8× 10−4

one
= 1.6× 10−3 V

Therefore the current is

I =
|E|

R
=

1.6 mV

2 ohm
= 0.8 mA

C9.2 The flux enclosed by the particle’s orbit is

Φ = BA = B πr2

where B is the magnetic field strength and r is the radius of the orbit. The particle
experiences a Lorentz force which is equal to the centripetal force around the orbit.
This leads to the force balance,

qvB =
mv2

r

which results in

r =
mv

qB

and

Φ =
πm2v2

q2B

a. From this we can calculate the speed,

v =

√

Φq2B

πm2
= 2.54× 105 m s−1

b. The accelerating voltage gave the particle all its kinetic energy since it was ac-
celerated from rest, so we must have

q∆V = kinetic energy =
1

2
mv2
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Hence

∆V =
mv2

2q
= 215 V

C9.3 We use the flux rule to find the induced e.m.f. in both cases. We start with

−E =
dΦ

dt
= area×

dB

dt
= AΦ 2πν B0 cos 2πνt

where AΦ is the area inside the loop which encloses magnetic field lines, and so the
current is

I =
|E|

R

=
AΦ

R
2πνB0 cos 2πνt

In each case the resistance of the wire is given by

R = 2πr
ρ

A
−→

1

R
=

A

2πrρ

where A is the cross sectional area of the wire. The current density is

J =
I

A

so A will not appear in our final formulas.

a. In this case the entire loop is within the magnetic field and so the area associated
with the magnetic flux is the area of the loop,

AΦ = πr2

and we find for the current,

I =
A

2πrρ
πr2 2πνB0 cos 2πνt

and so the current density is

J =
I

A
= π

r

ρ
νB0 cos 2πνt ←− r < a

b. In this case, whatever is the radius of the loop, when it’s greater than the radius
of the coil the area of magnetic flux is just the cross sectional area of the coil

AΦ = πa2

and we find

I =
A

2πrρ
πa2 2πνB0 cos 2πνt
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and so the current density is

J =
I

A
= π

a2

rρ
νB0 cos 2πνt ←− r > a

One explanation for this phenomenon is that while there is no magnetic field

outside the coil, there is vector potential and it is this that induces the e.m.f.
Interestingly the induced e.m.f. is independent of the radius of the wire loop,
however the resistance of the loop increases with its radius so as r → ∞ the
induced current tends to zero.

Note that when r = a the two expressions coincide as you’d hope they would. Note
also that inside the solenoid the induced current density increases linearly with the
radius of the loop and outside the coil it decays like 1/r. You should plot this.
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4CCP1501 Problem class 10

Do these problems in class with the help of tutors

C10.1 A source of alternating current produces an output electromotive force described
by the formula E = E0 sin(ωt). This is connected in turn to a resistor of resistance
R ohm; a capacitor of capacitance C farad; and an inductor of inductance L henry.
For each of these three circuits, find an expression for the current I as a function of
time. In the cases of the capacitor and the inductor identify what is the reactance
of the circuit and by plotting voltage and current as functions of time, indicate in
each case what is the phase difference and hence whether the current leads or trails
the voltage. Think very carefully to find an explanation in your head as to how the
phase difference between current and voltage is achieved in terms of the way charges
are moving in each circuit.

C10.2 An electric circuit is constructed using a resistor of 2330 ohm, an inductor of
0.15 henry and a capacitor of 5× 10−6 farad connected in series with an AC power
supply.

(i) Find the natural frequency in Hz of the circuit.

(ii) Find the total reactance at frequencies of 50 Hz and 500 Hz. Be sure to include
the units of reactance in your answer.

(iii) Use a graphical construction to estimate the phase difference between current
and voltage at frequencies of 50 Hz and 500 Hz. In each case state whether the
current leads or trails the voltage.

C10.3 Why is there a 4π in the constant 1/4πǫ0? Compare Coulomb’s law with
Newton’s law of gravitation (which doesn’t have a 4π). Then deduce Gauss’s law for
gravitation and use it to find the gravitational field due to an infinite sheet of mass
of uniform density ρm. Now you find a π in the answer to a problem that contains
no spherical shapes. Is that as it should be? Most professionals in physics still don’t
use SI units in electrodynamics. So πs appear in all the wrong places. Sommerfeld
was urging against this as long ago as the 1920s.
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4CCP1501 Problem class 10—solutions

C10.1 You will find the answer exactly reproduced in your Lecture 20 notes.

C10.2

(i) This is the frequency corresponding to the peak current in the undamped (R = 0)
circuit. Hence it is the solution of

ωL =
1

ωC

namely

ω0 =
1

√

LC
= 1154.7 rad s−1

Therefore the natural frequency is ω0/2π = 183.3 Hz

(ii)
50 Hz : reactance = −589.5 ohm

500 Hz : reactance = 407.6 ohm

(iii)

current leads voltage current trails voltage

C10.3 I’ll leave you to figure this out.
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4CCP1501 Tutorial 1

T1.1 What is the principle of superposition of forces?

T1.2 An object of mass 1.5 kg experiences three forces. These are, in newton,

F1 = 1.2̂ı + 3.3̂ + 1.6̂k

F2 = 3.3̂ı + 1.4̂ + 2.9̂k

F3 = 1.5̂ı + 2.7̂ − 5.1̂k

Find the total force and the acceleration of the object.

T1.3 A greengrocer attaches a bunch of bananas to her hanging scales. The spring extends
by 0.3 m. She then sets the bananas into oscillation. What is the frequency of this
oscillation in Hz? What approximations have you made?

T1.4 Show that for a linear spring of spring constant k, the potential energy stored in the
spring is

potential energy =
1

2
k(∆x)2

if it is stretched by an amount ∆x.
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4CCP1501 Solutions to Tutorial 1

T1.1 See your lecture notes.

T1.2
F = F1 + F2 + F3 = 6.0̂ı + 7.4̂ − 0.6̂k

The magnitude of the total force is

F =
√
6.02 + 7.42 + 0.62 = 9.6 N

The mass, m, is given as 1.5 kg and using F = ma we get

a = 9.6/1.5 = 6.4 m s−2

T1.3 The spring constant, k, is force per unit displacement:

k =
mg

∆x
(1)

Here, m is the mass and g is the acceleration due to gravity, so mg is the force acting
on the bananas due to gravity. ∆x is the displacement. (We always use the Greek
upper case ∆ to indicate a “finite change in. . . ”. Conversely we use the Roman lower
case d to indicate an infinitesimal change as in the differential calculus. Sometimes
the Greek lower case δ is used to mean a “small, but yet finite change in. . . ”)

The number of oscillations per second is the frequency, f . The angular frequency is

ω = 2π f

and is given in terms of the spring constant and the mass for the mass-on-a-spring
as

ω =

√

k

m
(2)

We may use g = 9.81 m s−2, and we are told that the displacement of the spring
due to the bananas is ∆x = 0.3 m. This allows us to calculate ω and hence f .
You may think that we need to know the mass and that I’ve not given you enough
information to solve the problem. But if you substitute equation (1) into (2) then
the mass cancels. You have,

ω =

√

g

∆x
=

√

9.81

0.3
= 5.72 rad s−1

Hence the frequency is
ω

2π
= 0.91 Hz.
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The approximations you have made are (i) to neglect the mass of the spring itself; (ii)
that the spring is linear, that means the amount of stretching (the “displacement”) is
directly proportional to the force applied, or in other words that the spring constant
is indeed constant and independent of the extension of the spring; and (iii) that there
is no damping. In real life it is impossible to remove all damping effects, such as
those arising from heating of the spring due to anelastic processes among the atoms
of the metal and friction from the air resistance, for example. It is also not easy to
design a perfectly linear spring. In physics we are always making idealisations like
this so that we can get down to the fundamental theory. Later when we need to
interpret experiments we can make corrections.

Students often make the mistake of confusing ω with f , and getting the dimensions
wrong. f is in units of s−1 (or Hz), and ω is in radians s−1. So students often make
errors of 2π in their answers. Also, if the question asks you for the frequency, then
work out the angular frequency and convert that to Hz.

T1.4 As I stretch the spring from zero to a displacement of ∆x the amount of force I have
to apply increases as the spring is stretched. When the spring is stretched to an
amount x, I have applied an amount of force F = kx. Then to stretch it by a further
infinitesimal amount dx I need to do an infinitesimal amount of additional work,

dW = force× distance = F × dx = kx dx

So the total amount of work I have to do to stretch the spring from zero to ∆x can
be found by an integration of the work,

W =

∫

∆x

0

dW = k

∫

∆x

0

xdx =
1

2
k(∆x)2 (3)

The work done is the potential energy stored in the spring. Note that k is a constant
so it comes to the front of the integral sign.

You can see this easily if you just plot force against distance, which is a straight line
with slope k if the spring is linear. Then you note that the work done is the area
under the line between zero and ∆x.

You may have argued that if energy is force times distance then if the force is k∆x
and the distance is ∆x then the energy is k(∆x)2, but then you’re out by a factor
of two. Make sure you understand why there has to be a half in equation (3): it’s
because, as I said, the amount of work you need to stretch the spring by a given
amount increases as the spring becomes stretched. You can try it with an elastic
band.
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4CCP1501 Tutorial 2

T2.1 Zoe waits on a railway platform while two trains approach from the same direction
and at the same speed of 8 m s−1. Neither of them is going to stop, so both trains
are sounding their whistles, which have the same frequency; and one train is some
distance behind the other. After the first train passes Zoe but before the second
train has passed her, she hears a beating in the volume of the sound of the whistles
having a frequency of 4 Hz. What is the frequency of the trains’ whistles?

You will need to know about the Doppler effect: if a wave has a phase velocity of
v and is emitted at frequency f from a source travelling towards an observer with
speed vs then the frequency perceived by the observer travelling towards the source
with speed vo is

f ′ =

(

v + vo

v − vs

)

f

[The speed of sound in air is 343 m s−1]
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4CCP1501 Solutions to Tutorial 2

T2.1 Since Zoe is stationary, we use the formula

f ′ =

(

v

v − vs

)

f

We need to find f . From the approaching train, Zoe hears a whistle of frequency

f1 =

(

343

343− 8

)

f

and from the receding train, she hears a frequency

f2 =

(

343

343 + 8

)

f

From our notes we know that the beat frequency is (f1 − f2) = 4 Hz because the
receding train produces a note of lower frequency. This leads to

4 Hz =

(

343

343− 8

)

f −

(

343

343 + 8

)

f

which we solve for f to get f = 85.7 Hz.
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4CCP1501 Tutorial 3

T3.1 A mass of 0.5 kg is suspended from a rigid support by a spring which stretches by

0.08 m. Find the angular frequency.

Write down an equation for the displacement of the mass as a function of time in

terms of the amplitude and angular frequency. Write down an equation for the speed

of the mass. Using these two equations show that the total energy is constant and

independent of the time.

The oscillator is now subjected to a damping force such that the damping ratio is

0.01. Calculate the frequency of the oscillator. As the oscillation is damped so that

the mass comes to rest, estimate the fraction of energy that is lost over each period.

Hence determine the quality factor of the damped oscillator.

The oscillator is now driven by a sinusoidal force of amplitude 1 N. Calculate the

resonant angular frequency. Calculate the static amplitude and the amplitude at

resonance. What is the amplification factor at resonance?
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4CCP1501 Solutions to Tutorial 3

T3.1 Spring constant is

k =
0.5× g

0.08
=

4.905

0.08
= 61.313 M m−1

Hence

ω0 =

√

k

m
= 11.074 rad s−1

x = A cosω0t

speed = −Aω0 sinω0t

Total energy = kinetic energy + potential energy

=
1

2
mv2 +

1

2
kx2

=
1

2
mv2 +

1

2
ω2

0
mx2

=
1

2
mA2ω2

0
sin2 ω0t+

1

2
mA2ω2

0
cos2 ω0t

=
1

2
mA2ω2

0

=
1

2
kA2

This is independent of t.

The damping ratio, Z = 0.01; ωD = ω0

√
1− Z2 = 11.073 rad s−1. So the damped

frequency is 1.762 Hz.

The rate of decay of the average energy is

dE

dt
= −2Zω0E

Over one period of oscillation the energy dissipated is

∆E = −
dE

dt
× period

= 2Zω0E ×
2π

ωD

so the fraction of energy lost is

∆E

E
= 4π Z

ω0

ωD

≈ 4πZ = 0.126
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which is the specific damping capacity, S. The quality factor, Q, is

Q =
2π

S
≈

1

2Z

Hence S = 0.126 and Q = 50.

ωmax = ω0

√
1− 2Z2 = 11.072 rad s−1

Hence the resonant freqency is 1.762 Hz.

The static amplitude is As = F0/k = 1/61.3 = 0.016 m. The amplitude at resonance
is AsQ = 0.016 × 50 = 0.8 m. The amplification factor at resonance is Amax/As =
0.8/0.016 = 50 (which is of course Q).
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4CCP1501 Tutorial 4

T4.1 A mechanical simple harmonic oscillator is affected by viscous forces, having a damp-
ing ratio, Z = 0.1. It is driven by a sinusoidal force of angular frequency ω. Use a
computer plotting program to make a graph of the magnification factor, Ds = A/As,
as a function of the frequency ratio, r = ω/ω0. Here, A is the amplitude and As is
the “static amplitude” (or amplitude in the limit of zero driving frequency). ω0 is
the natural angular frequency of the oscillator in the absence of damping. On your
plot, indicate the values of ωD/ω0 and ωmax/ω0, where ωD is the natural angular
frequency of the damped oscillator and ωmax is the resonant frequency. Also mark
on your plot the value of the quality factor, Q.

If you are good at plotting, then try and vary the damping ratio to produce a family
of resonance curves. Please don’t use excel: teach yourself a grown-up plotting
program like gnuplot, python or MATLAB.

[HINT: You are being asked to plot the function

Ds =
A

As

=
1

√

(1− r2)2 + (2rZ)2

which is equation (5) in your additional notes on simple harmonic motion (at KEATS).
You will find examples of the curves on page 9 of these notes. If you are bold and
wish to go further you may plot and think about the phase angle

φ = arctan
2rZ

1− r2

which is the phase difference between the driving force and the oscillator. It is not
at all obvious how and why the response of the driven oscillator is out of phase with
the driving force.]
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4CCP1501 Solutions to Tutorial 4

T4.1 Here’s my curve:

0 0.5 1 1.5 2 2.50

1

2

3

4

5

ω / ω0

A
 / 

A
s

ωD / ω0 = 0.995

ωmax / ω0 = 0.990

Q = 5

Note that even with fairly large damping, ωmax = ωD = ω0 to within 1%. So on a

cartoon graph such as in the lecture notes I mark these off to indicate ωmax > ωD > ω0

but in most practical cases of under damping they can be regarded as equal.

Note that the high frequency tail goes like 1/ω2.
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4CCP1501 Tutorial 5

T5.1 Light with wavelength 442× 10−9 m passes through a Young’s double slit apparatus
in which the slits are separated by d = 0.4× 10−3 m. How far away must the screen
be placed so that dark fringes appear directly opposite each slit with only one bright
fringe in between them? [Use the small angle approximation, sin θ ≈ tan θ ≈ θ.]

T5.2 Very low frequency (VLF) radio waves have wavelengths in the range 10 to 100 kilo-
meters. A surfaced submarine sends a VLF signal which is received by a receiving
station in Antarctica via two paths. One is the direct path of 1000 km between
submarine and receiver; the other is by reflection of the signal from the ionosphere,
which is a layer of ionised molecules in the upper atmosphere having a smaller re-
fractive index than air. Reflection happens at a point midway between the station
and the receiver, and this leads to a signal of wavelength 15 km being particularly
weak at the receiver. Calculate the minimum height of the ionosphere.

T5.3 You are holding a laser that emits at a wavelength of 632.8 nm. You attach an opaque
sheet containing two slits to the front of the laser and project the interference pattern
on to a screen. The slits are separated by 0.3 mm. Now you walk towards the screen
at a speed of 3 m s−1 so that the fringes move closer together. What is the speed of

the 50th-order bright fringe?



4CCP1501 Tutorial 5 Page 1 of 2 (A.T.P. 19 August 2017)

4CCP1501 Solutions to Tutorial 5

T5.1

For dark fringes, d sin θ =
(

m+ 1
2

)

λ. We want the zero-order fringe, m = 0, so

d sin θ =
1

2
λ ≈ θd

From the diagram,

tan θ =
y

D
≈ θ

and we want y = 1
2
d so the dark fringe is opposite the slit. We write

θd ≈
1

2
λ ⇒ θ =

1

2

λ

d

tan θ =
d/2

D
≈ θ ⇒ D =

1

2

d

θ

Therefore

D =
1

2
d
2d

λ
=

d2

λ
=

(0.4× 10−3)2

442× 10−9
= 0.362 m
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T5.2

We want to find h in the diagram. The path difference for a first order minimum is
1
2
λ and so we have

path difference =
1

2
λ = 2ℓ− 2L = 2

(√
L2 + h2 − L

)

⇒
1

2
λ+ 2L = 2

√
L2 + h2

⇒
1

4

(

1

2
λ+ 2L

)2

− L2 = h2

⇒ h2 =
1

4
(7.5 + 1000)2 − 10002 km2

⇒ h = 61.352 km

T5.3 The 50th-order bright fringe is located at an angle θ given by

d sin θ = mλ ⇒ θ = arcsin
mλ

d

In our notes we use D for the distance between the slits and the screen, and y for
the distance from the centreline to the fringe, that is the distance from the central

maximum to the mth-order fringe. As tan θ = y/D and θ is unchanging, as you
walk towards the screen the ratio y/D remains constant. Now,

y = D tan θ

dy

dt
=

dD

dt
tan θ

= −v tan θ

where v is the speed you are walking at. The minus sign appears because Ḋ is
negative since D is getting smaller as you walk. So the speed of the fringe is

vfringe = −
dy

dt
= v tan θ

= v tan

[

arcsin

(

mλ

d

)]

= 3× tan

[

arcsin

(

50× 632.8× 10−9

0.3× 10−3

)]

= 0.318 m s
−1



4CCP1501 Tutorial 6 Page 1 of 1 (A.T.P. 24 November 2017)

4CCP1501 Tutorial 6

T6.1 We found in Lecture 7 that two melons of mass 1 kg one metre apart experience an
attractive force of about 10−12 N due to gravity. Suppose each melon has 0.01% more
electrons than protons and make an order of magnitude estimate of the repulsive force
between them.

T6.2 In a hydrogen atom, an electron of charge −e = −1.602 × 10−19 C is found near a
proton of charge +e at an average distance of a0 = 0.0529 nm (1 nm = 10−9 m);
this distance is called the “Bohr radius.” Calculate the work I would have to do to
remove this electron. [HINT: integrate the force,

∫
Fdr, from a0 to infinity.] You can

do this in SI units if you like, but it’s especially easy to use “Rydberg atomic units,”
in which a0 = 1, e2 = 2 and 4πǫ0 = 1. The energy you get is then in Rydbergs.
The known binding energy of the hydrogen atom is −1 Ry = –13.6 eV (eV is an
“electron volt,” 1 eV = 1.602× 10−19 J). In your tutorial, discuss why you don’t get
this answer.
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4CCP1501 Solutions to Tutorial 6

T6.1 Each melon has 0.01% more electrons than protons. So the number of electrons is

ne = (1 + 0.0001)np

where np is the number of protons. The total charge Q on each melon is the difference
in numbers of electrons and protons times the charge −e on each electron,

Q = −e(ne − np)

= −e(1.0001np − np)

= −0.0001npe (1)

Now, how many protons are there in a melon? Most atoms have roughly equal
numbers of protons and neutrons and the mass of the electrons is small enough to
be neglected; so about half the mass of a melon is made up of protons. So if the
melon has a mass m and the mass of a proton in mp then

np =
1

2

m

mp

With m = 1 kg and mp = 1.67 × 10−27 kg this gives us np = 3 × 1026 and putting
this in equation (1) with e = 1.6 × 10−19 C we get Q = −4790 C. Then finally the
force acting between the two melons, one meter apart, is

F = 9× 109
Q2

one2

= 2× 1017 [N]

This is of course a truly enormous force. Even if the melon had only 0.000001%
more electrons that protons the force would still be over 2000 kN—greater than the
capability of a large tensile testing machine.

T6.1 Working in atomic units, the force between the proton and the electron when a
distance r apart has magnitude −e2/r2 = −2/r2. I want to integrate force×distance
from a0 to infinity to get the work done in removing the electron. The force that I
apply is minus the force acting on the electron due to the proton, namely e2/r2, so

E = e2
∫

∞

a0

dr

r2

= e2
[

−

1

r

]

∞

a0

=
e2

a0
= 2 [Rydberg]

Why isn’t this the known binding energy of minus one Rydberg? Because we have
calculated only the potential energy of the hydrogen atom. We need to add the
kinetic energy of the motion of the two particles. Surely this is a hard problem
in quantum mechanics? Yes, it is; but we can appeal to the virial theorem which
applies in quantum mechanics as well as in classical mechanics. For a system whose
potential energy is proportional to r−1, we know that
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2× kinetic energy = −potential energy

and of course
total energy = potential energy + kinetic energy

So you see from these two expressions that the total energy of the hydrogen atom with
respect to the proton and electron at infinite separation is indeed minus one Rydberg.
The calculation of the potential energy by a simple integration is quite easy. When we
come to study the electric potential you will see there is an even easier way to obtain
this result.

Additional note: when I wrote this tutorial I was not sure whether we would have
covered the electric potential yet. But we have and so you should check in your head
that you can actually write down the work done in removing the electron without doing
an integration.
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4CCP1501 Tutorial 7

T7.1 We’re pretty certain that the electron is an elementary particle. According to
wikipedia its radius is certainly less than 10−22 m. But if it is a point charge
then as we have seen in Lecture 12 its electrostatic self energy is infinite. So let’s
try the following line of argument. Suppose the electron is a sphere of radius re
and its charge −e is uniformly distributed throughout the sphere. Show that the
electrostatic energy is

W =
1

4πǫ0

3

5

e2

re

If you find this too hard, do the case where the charge −e is distributed evenly over
the surface of the sphere and obtain

W =
1

4πǫ0

1

2

e2

re

If that’s also too hard, don’t worry just take the results as given and drop the half
or the three-fifths. Then equate this energy with the rest energy of the electron by
writing

1

4πǫ0

e2

re
= mc2

Then visit http://physics.nist.gov/cuu/Constants and work out the numerical
value of re which is called the “classical electron radius”. Incidentally, what are the
classical radii of the µ and τ leptons?

T7.1 Let’s think a bit more about the “size” of an electron. Find out a bit about the
Compton experiment. This was the experiment that drove the final nail into the
coffin of the notion that light is a wave. Photons were scattered by the free electrons
in a graphite sheet and the difference in wavelength between incident and scattered
X-rays was found to depend on the scattering angle, θ, through the Compton shift

equation

∆λ =
h

mc
(1− cos θ)

The largest observed Compton shift is called the “Compton wavelength”,

λc =
h

mc

We could use this, or maybe,

λ̄c =
h̄

mc

as a measure of the size of an electron. Here h is the Planck constant and h̄ = h/2π
is called the “reduced Planck constant”. In your last tutorial, T6, you encountered
the hydrogen atom and in its ground state the electron is in an orbit whose “radius”
is a0 (the Bohr radius). Actually this is the average, or “expectation” value of the
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measured distance from the proton to the electron. This provides a third estimate
of the “size” of the electron. Using the definition of the fine structure constant,

α =
1

4πǫ0

e2

h̄c
≈

1

137

show that
re = αλ̄c = α2a0

that is, each estimate, re <λ̄c < a0, becomes smaller in powers of the fine structure
constant. You may want to read around a bit about the Planck constant or the fine
structure constant, and discuss in your tutorial any consequences of this calculation.
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4CCP1501 Solutions to Tutorial 7

T7.1 The problem of the uniformly charged sphere is an important one; the result is
needed in pseudopotential theory and the atomic spheres approximation in solid
state physics. As is often the case, there are two ways to solve it—using Gauss’s law
and the electric field, and using the electric potential.

If we use Gauss’s law then we first need to find the field outside the sphere. That’s
easy, it’s

E =
1

4πǫ0

−e

r2
, r > re

exactly as for a point charge. So the energy stored in that part of space is

Wout =
1

2
ǫ0

∫
∞

re

E2 4πr2dr

=
1

4πǫ0

1

2
e2

∫
∞

re

1

r2
dr

It’s as for the point charge in Lecture 12 but now the lower limit doesn’t trouble us
and the result is finite. So we have

Wout =
1

4πǫ0

1

2

e2

re

This is the solution if the charge is confined to the surface of the sphere, as it would
be if the we were dealing with a metal sphere or with the charged shell of Lecture
11, since inside such a sphere the electric field is zero as a gaussian surface contains
no charge. But to do the case of a uniformly charged sphere we also need the field
inside. A gaussian surface of radius r < re encloses a volume (4/3)πr3 and hence an
amount of charge

Qenclosed = ρ
4

3
πr3 density× volume

and the charge density within the sphere, being uniform, is

ρ =
−e

(4/3)πr3
e

charge÷ volume (1)

Gauss’s law states

flux through gaussian surface = electric field× area =
1

ǫ0
Qenclosed

That is,

E × 4πr2 =
1

ǫ0
ρ
4

3
πr3

so the electric field at radius r inside the sphere is

E =
1

4πǫ0

4

3
πrρ , r < re
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(note it increases with r as you’d expect; it’s a good idea to sketch the field as a
function of r at this point, both inside and outside the sphere) and so

Win =
1

2
ǫ0

∫
re

0

E2 4πr2 dr

=
1

4πǫ0

1

2

(
4

3
πρ

)2 ∫ re

0

r4 dr

︸ ︷︷ ︸

=
1

5
r
5
e

So from the electric field inside the sphere the energy is, using (1),

Win =
1

4πǫ0

1

10

e2

re

and if we add this to the energy from the field outside the sphere we get the final
result, which is

W = Win +Wout =
1

4πǫ0

3

5

e2

re

To do the same problem using electric potential proceed as follows. We will bring in
from infinity little increments of charge and plaster them evenly over the surface of
a growing sphere of uniform charge density

ρ =
−e

(4/3)πr3
e

At every stage of this process the sphere has a radius r and its total charge up to
this stage is

q(r) =
4

3
πr3 ρ volume of growing sphere× density

We bring in an increment of charge dq from infinity and add it to the sphere in the
form of a spherical shell of charge of volume 4πr2dr so the increment of charge is

dq = ρ 4πr2dr density× volume of shell

The electric potential at radius r due to the charge already accumulated is

V (r) =
1

4πǫ0

q(r)

r
=

1

4πǫ0

4

3
πr2 ρ

and so the work done in bringing in this increment of charge dq is

dW = V (r) dq =
1

4πǫ0

16

3
π2ρ2r4dr
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So the total work done in assembling the charged sphere is

W =

∫
re

0

=
1

4πǫ0

16

3
π2ρ2

∫
re

0

r4 dr

︸ ︷︷ ︸

=
1

5
r
5
e

=
1

4πǫ0

3

5

e2

re

using the formula (1) for ρ. This is of course the same result that we got using
Gauss’s law and as is generally the case fewer steps are needed using the electric
potential rather than the field.

It is interesting to compare the two approaches to calculating the energy: from the
electric field and from the electric potential. In the first instance you are required
to do two integrals and when combined they reach from the centre of the electron
to infinity. This underlines the point made in lecture 12, at equation (12.5), that
the electrostatic energy is “stored” in the empty space surrounding the point charge.
This is especially evident if you did the case of the metal sphere or hollow shell
because then none of the electrostatic energy arises from within the sphere where
the field is zero. On the other hand, in the case of using the electric potential to do
the calculation you are only required to do an integral from the centre to the surface
of the sphere, so where does the empty space come in? But remember that the
space outside is highly important there too—you need to carry each little increment
of charge through that space from infinity. Maybe this picture is physically more
appealing, in the sense that you’re not required to believe, as the Victorians did,
that the electrostatic energy is stored in the elastic distortion of the ether, in the
same way as energy in a metal spring is stored in the elastic strain of the metal
crystal lattice. Thanks to Einstein we know that there is no ether.

So to finish the problem we now have

re =
1

4πǫ0

e2

mc2

and if I look up the masses of the leptons and I use

1

4πǫ0
= 9× 109 [N m2 C−2] and c = 3× 108 [m s−2]

I get
re = 2.8× 10−15 [m]

rµ = 1.4× 10−17 [m]

rτ = 8.1× 10−19 [m]

Note the more massive particles have a smaller classical radius.
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T7.2

α =
1

4πǫ0

e2

h̄c

a0 = 4πǫ0
h̄2

me2

λ̄c =
h̄

mc

re =
1

4πǫ0

e2

mc2

αλ̄c =
1

4πǫ0

e2

mc2

α2a0 =
1

4πǫ0

e2

mc2

Note that all of these quantities except re involve the Planck constant. That’s why
it’s called the classical electron radius. Compton scattering is the inelastic scatter-
ing of photons by free electrons. Elastic scattering of photons by free electrons is
called Thomson scattering (named after J. J. Thomson) and in that experiment the
differential cross section for scattering into an angle θ is 1

2
r2
e
(1 + cos2 θ). This is

interesting because the Thomson scatter into zero, or glancing, angle gives a measure

of the size of the electron which is consistent with the construction in question T7.1
using electrostatics and special relativity. It is curious, that when electrons scatter
photons inelastically (that is they exchange energy with the photon) they appear to
be larger, by a factor of α, than when they scatter elastically. You might ponder on
why that is, or ask your tutor.
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4CCP1501 Tutorial 8

T8.1 Use the Biot–Savart law to show that the magnetic field at a perpendicular distance

s from the mid-point of a straight wire of length L carrying an electric current I has

magnitude

B =
µ0

4π

I

s

2
√

1 + 4s2/L2

T8.2 Find an expression for the magnitude of the magnetic field at the centre of a loop of

wire that is shaped into an equilateral triangle of side L and is carrying a current I.
Draw a sketch to show the direction of the current and the direction of the magnetic

field.

T8.3 What is the magnitude of the magnetic moment of this object? Draw a sketch to

show the direction of the magnetic moment vector. A magnetic field of strength B
is applied along a direction that is 30◦ from the direction of the magnetic moment.

Find an expression for the torque acting on the triangular loop in terms of B, I and

L. In what direction is the torque pointing?
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4CCP1501 Solutions to Tutorial 8

T8.1 See your lecture notes.

T8.2

First find the length, s:

s =
1

2
L tan 30◦ =

1

2
√
3
L

Hence

4s2 = 4×
L2

12
=

1

3
L2

So
4s2

L2
=

1

3
;

√

1 +
4s2

L2
=

√

4

3
=

2
√
3

Now we use the formula from the question, recognising that the field in the centre, by

the principle of superposition, is three times that from one side of length, L,

B = 3
µ0

4π

I

s

2
√

1 + 4s2/L2

= 3
µ0

4π
I
1

s

√
3 =

µ0

4π
I
6
√
3

L

√
3

=
µ0

4π
I
18

L
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T8.3

magnetic moment = current× area

area of triangle =
1

2
× L×

√
3

2
L =

√
3

4
L2

Hence

m =

√
3

4
I L2

torque, T = m×B

Hence

T =

√
3

4
I L2 B sin 30◦ =

√
3

8
I L2 B
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4CCP1501 Tutorial 9

T9.1 An infinitely long straight cylindrical wire of radius a carries a current I. Use
Ampère’s Law and a suitably chosen amperian loop to calculate the magnetic field
B as a function of distance r from the axis of the wire, both inside and outside
the wire, and draw a sketch graph of B as a function of r, for the following three
distributions of the currrent over the cross section.

(a) The current is uniformly distributed over the outside surface of the wire.

(b) The current is uniformly distributed over the whole cross section of the wire.

(c) The current is distributed such that the current density J is proportional to r,
the distance from the axis of the wire.

In each case sketch the magnetic field from the centre to a point distance from the
surface of the rod.

[HINT: in the case (c) we are told that the current density J is proportional to r,
but we want our answer in terms of the total current, I. So write down

J = κr

say, and first we need to find the constant κ. To do this, ask what is the current
carried by an infinitesimal tubular shell of radius r and thickness dr? Looking down
the wire we see this

The area of the cross section of the tube is 2πrdr so the element of current is

dI = J × 2πrdr = 2πκr2dr

Then the total current is

I =

∫
a

0

dI = 2πκ

∫
a

0

r2dr

When you’ve done that integral then you can find κ and hence the current density
at a distance r from the centre as a function of I and the radius a. (You should get
J = 3Ir/2πa3.) Then when you want the current flowing through an amperian loop
of radius r, say, you need to do the integral again, but this time with the upper limit
r instead of a.]
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4CCP1501 Solutions to Tutorial 9

T9.1

(a) All the current is carried on the outside surface so there is no current “linking”
the amperian loop having radius r < a. So there’s no magnetic field inside.

The amperian loop of radius r ≥ a is linked by the total current I, so

∮
B · dℓ = µ0I

or

B × 2πr = µ0I

Therefore

B =
µ0I

2πr
r ≥ a

(b) The current density is uniform across the section of the wire and equal to

J =
current

area
=

I

πa2

so the current linked by the amperian loop having radius r ≤ a is

Ienclosed = J × area

=
I

πa2
× πr2 = I

r2

a2
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So

B × 2πr = µ0I
r2

a2

giving us

B =
µ0I

2π

r

a2
r ≤ a

If r ≥ a the current linked is I and the field outside is the same as in (a)

B =
µ0I

2πr
r ≥ a

Note that, of course, for r = a the two expressions coincide, as they should; see
the sketch:

(c) Here we have to write that J is proportional to r, that is,

J = κr

say, and first we need to find the constant κ. To do this, ask what is the current
carried by an infinitesimal tubular shell of radius r and thickness dr? Looking
down the wire we see this

The area of the cross section of the tube is 2πrdr so the element of current is

dI = J × 2πrdr = 2πκr2dr

Then the total current is

I =

∫
a

0

dI = 2πκ

∫
a

0

r2dr = 2πκ
1

3
a3 (1)
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Therefore we’ve found κ:

κ =
3I

2πa3

and the current density is

J =
3I

2π

r

a3

Now we want the current flowing through an amperian loop of radius r < a. This
means we do the integral in (1) again but just between the limits 0 and r. So
the current enclosed by the amperian loop is

Ienclosed(r) = 2πκ

∫
r

0

r′2dr′ = 2πκ
1

3
r3

= 2π
3I

2πa3
1

3
r3

= I
r3

a3

So by Ampère’s law

B × 2π = µ0I
r3

a3

and

B =
µ0I

2π

r2

a3
r ≤ a

Again as in parts (a) and (b) if r ≥ a the current linked is I and

B =
µ0I

2πr
r ≥ a

Note that, of course, for r = a the two expressions coincide, as they should; see
the sketch:
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4CCP1501 Tutorial 10

T10.1 An insulating sphere, of radius a, carries a charge Q. The charge is distributed with
spherical symmetry such that the charge density is zero at the centre and increases
as a positive integer power with the distance from the centre to the surface of the
sphere (that is ρ ∝ rn, n ∈ Z

+). Find the electric field inside the sphere as a function
the distance from the centre. What is the electric field outside the sphere? Show
that the electric field is continuous across the surface of the sphere and make a sketch
of the electric field from the centre to a point distant from the surface in the case
that the charge density is quadratically increasing with radius.

T10.2 A vortex of water occurs in a whirlpool, or when you drain your bathwater. Suppose
that water is flowing around the centre of a vortex with uniform angular velocity

ω =
dθ

dt

θ

x = r cos θ

r
y

x

v

y = r sin θ

(a) Using the figure, demonstrate that the velocity of the water at the point r =
x̂ı + ŷ is given by the formula

v(r) = −ωŷı + ωx̂

(b) Find the curl, ∇ × v, of the vector velocity field. In which direction is the curl
pointing? What is the divergence of the velocity field, ∇ · v?

OVER. . .
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T10.3 Two parallel sheets of insulator of thickness d are separated by vacuum and carry
uniform charge densities ±ρ C m−3.

+

−

x=d

x=0

Concentrate on the lower, positive, sheet. Using the Gaussian pillbox shown, find
an expression for the electric field, E, inside the sheet as a function of x. Note that
the electric field is zero below the sheet (that’s what the negatively charged sheet
is for: to make the problem easier. There is only flux through the top surface of
the pillbox, and the charge inside is the volume times ρ). Calculate the divergence,
∇ · E, of the field and show that this agrees with Gauss’s Law. Calculate the curl
of the field, and confirm that ∇× E = 0.
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4CCP1501 Solutions to Tutorial 10

T10.1 We start by writing ρ = krn, and then we need to find the constant k. It’s a bit like
the problem of last week. First, how are we going to set up the integration? Imagine
the infinitesimally thin spherical shell of matter within the sphere, having radius r
and thickness dr. Its volume is

dV =
4

3
π
[

(r + dr)3 − r3
]

= 4πr2dr +O(dr2)

after throwing away terms smaller than dr. The amount of charge in this shell is
its volume times the charge density, dQ = ρdV . Now we can write the total charge
in the sphere by summing all these infinitesimal shells from radius zero to radius a.
We do this with an integration,

Q =

∫

a

0

dQ =

∫

a

0

ρdV = 4πk

∫

a

0

rn+2dr

= 4πk

[

1

n+ 3
rn+3

]

a

0

= 4πk
1

n+ 3
an+3 (1)

Good. We now have

k =
1

4π
Q

n+ 3

an+3
(2)

To find the electric field at a distance r from the centre of the sphere we use Gauss’s
law: flux is charge enclosed divided by ǫ0. The enclosed charge is found by do-
ing the integral again, now between zero and r. So by comparison with (1) and
substituting (2)

Qenclosed = 4πk
1

n+ 3
rn+3 =

Q

an+3
rn+3

(note the 4π and n+3 cancel out). The area of the the gaussian surface is 4πr2 and
so Gauss’s law reads

E × 4πr2 =
1

ǫ0
Qenclosed =

1

ǫ0

Q

an+3
rn+3

The final result is

E =
1

4πǫ0

Q

an+3
rn+1

Note a few things. (i) The field increases inside the sphere as rn+1. To get things
dimensionally right, there’s a an+3 in the denominator; this is a useful check that
you’re on the right track. (ii) If you can, always do the most general case. Then
if you’re asked about a problem in which the charge density goes like, say, the cube

of the distance, then you’ve already done it. (iii) Now go back to the last problem,
T8.1 from last week, and do the general case J = κrn.

If r > a then the electric field is the same as that of a point charge of amount Q at
the origin and you can check that at r = a the field is

E(a) =
1

4πǫ0

Q

a2

as you’d hope it would be.
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T10.2 Angular velocity is

ω =
dθ

dt
[radian s−1]

We have
distance travelled in one period = 2πr

time taken over one period =
2π

ω

and therefore
speed = distance÷ time = ωr

Then
velocity, v(r) = speed× unit vector v̂

= ωrv̂

= ωr(− sin θ̂ı + cos θ̂ )

= −ωŷı + ωx̂

You can show it another way,

v =
dr

dt
=

d

dt
x̂ı +

d

dt
ŷ =

dx

dθ

dθ

dt
ı̂ +

dy

dθ

dθ

dt
̂

= −r sin θ
dθ

dt
ı̂ + r cos θ

dθ

dt
̂

= −yωı̂ + xω̂

Or yet another way by calculating v = ω × r . . .

Now you have the velocity vector field you can find its curl and divergence. Instinc-
tively I hope you can see that the field has circulation, that is, non zero curl; but
zero divergence—there is no source of water anywhere. To prove it just do

∇× v(r) =

∣

∣

∣

∣

∣

∣

ı̂ ̂ k̂
∂
∂x

∂
∂y

∂
∂z

−ωy ωx 0

∣

∣

∣

∣

∣

∣

= 2ωk̂

so the curl vector points in the z-direction—perpendicular to the plane of the
vortex—and has a magnitude of twice the angular velocity. To show that the diver-
gence vanishes,

∇ · v(r) =
∂

∂x
(−ωy) +

∂

∂y
(ωx)

= 0
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T10.3 Area of pillbox is A. The only flux is through the top surface. So,

E(x)× A =
1

ǫ0
Qenclosed

The volume of the pillbox lying inside the sheet is Ax, therefore

Qenclosed = ρAx

and so

E(x) =
1

ǫ0
ρx

and if we want to include the direction as well as magnitude of the field, we write

E =
1

ǫ0
ρx ı̂

I can take the divergence of both sides of this,

∇ · E =

(

ı̂
∂

∂x
+ ̂

∂

∂y
+ k̂

∂

∂z

)

·
1

ǫ0
ρx ı̂

=
1

ǫ0
ρ ı̂ · ı̂ =

1

ǫ0
ρ

which is, indeed, Gauss’s Law. To show that the circulation, or curl, of the electric
field is zero, write

∇× E =

∣

∣

∣

∣

∣

∣

∣

ı̂ ̂ k̂
∂
∂x

∂
∂y

∂
∂z

1
ǫ0
ρx 0 0

∣

∣

∣

∣

∣

∣

∣

= 0
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4CCP1501 Worked Problem

Find the electric field along the central axis outside a uniformly charged disc.

This has the shape of a pound coin, or hockey puck. The thickness is T ; the radius is
R and the total charge is Q. This is like the problem that we solved in Lecture 9, but
now instead of a two dimensional circular sheet, which has no thickness, the disc has a
thickness T . But the strategy is the same: we set up a point, P , which is a distance s
above the surface of the disc, and along the central axis, and ask what is the electric field
due to an infinitesimal sheet, of thickness dt within the disc that is a distance t below
the top surface. We know the solution to that problem from page 2 of Lecture 9; and
now we just have to integrate, that is, to sum up all the infinitesimal sheets of charge
from t = 0 to t = T .

Shape of the puck and illustration of the integration.

The infinitesimal sheet is a distance t below the surface so it is a distance s + t from
point P . So, the increment of electric field at point P due to the sheet is, using the
equation from Lecture 9 and substituting s+ t for s,

dE =
1

4πǫ0
2π dσ (s+ t)

(

1

s+ t
− 1
√

R2 + (s+ t)2

)

(1)

and we only need the magnitude of the vector because we know it is pointing along
the k̂ -direction. I have written that the charge density on the infinitesimal sheet is dσ
[C m−2] and I can find what this is in terms of the total charge Q as follows.

The charge density is

ρ =
charge

volume of puck
=

Q

πR2T
(2)

the volume of the infinitesimal sheet is

dV = πR2dt
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and the charge in the infinitesimal sheet is

dq = ρ dV =
Q

πR2T
πR2dt =

Q dt

T

So the infinitesimal charge density of the sheet is

dσ =
charge

area
=

dq

πR2
=

Q dt

T

1

πR2
= ρ dt

where I have used equation (2). Now I can rewrite equation (1) in terms of the volume
charge density, rather than the surface charge density,

dE =
1

4πǫ0
2π ρ dt (s+ t)

(

1

s+ t
− 1
√

R2 + (s+ t)2

)

=
1

4πǫ0
2π ρ dt

(

1− (s+ t)
√

R2 + (s+ t)2

)

Now I will integrate this from t = 0 to t = T and note that there are two terms. The
first I can do in my head since

∫

T

0

dt = T

and so the total electric field at point P is

E =

∫

T

0

dE =
1

4πǫ0
2πρT − 1

4πǫ0
2πρ

∫

T

0

(s+ t)
√

R2 + (s+ t)2
dt (3)

You can at once inspect the limit as R → ∞. What do you expect? Well in this
limit you have an infinite disc of thickness T and volume charge density ρ so the charge
density per unit area is σ = ρT . And as R → ∞ the integrand becomes zero and you
are left with

E(R → ∞) =
1

2

ρT

ǫ0
=

σ

2ǫ0
(4)

You can easily confirm this using Gauss’s law.

What we now have in equation (3) is an expression for E which is the value it would
have in the limit of infinite radius plus a correction term that we will call Ecorr, due the
finite size of the disc. By comparison with equation (3)

Ecorr = − 1

4πǫ0
2πρ

∫

T

0

(s+ t)
√

R2 + (s+ t)2
dt

We can do the integral by substitution, u = s+ t, dt = du,

∫

s+ t
√

R2 + (s+ t)2
dt =

√

R2 + (s+ t)2 + constant
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and this gives us the correction term due to the finite radius of the disc,

Ecorr =
1

4πǫ0
2πρ

[√
R2 + s2 −

√

R2 + (s+ T )2
]

Adding this to the first term in equation (3) gives me my final answer,

E =
1

4πǫ0
2πρ

[

T +
√
R2 + s2 −

√

R2 + (s+ T )2
]

(5)

If s becomes very large compared to R and T , then from a long distance the field
must look like that of a point charge Q = πR2Tρ. If I expand the term in brackets in
equation (5) around s = ∞ I get

T +
√
R2 + s2 −

√

R2 + (s+ T )2 =
R2T

2s2
+O(s−3)

and so

E(s → ∞) =
1

4πǫ0
2πρ

R2T

2s2
=

1

4πǫ0

Q

s2
(6)

as expected.

If the disc is thin, that is, T ≪ R; and if also s ≪ R so that my point P is close to the
surface of the disc,

√
R2 + s2 −

√

R2 + (s+ T )2 = R

√

1 +
( s

R

)2

−R

√

1 +

(

s+ T

R

)2

≈ R

[

1 +
1

2

( s

R

)2
]

−R

[

1 +
1

2

(

s+ T

R

)2
]

= − T

2R
(2s+ T )

So putting this in place of the two square roots in (5), to first order in s the electric
field is

E =
1

4πǫ0
2πρT

(

1− 2s+ T

2R

)

(7)

=
1

4πǫ0
2πσ

(

1− 2s+ T

2R

)

(8)

This makes sense, because in the limit that the radius is infinite I recover from equa-
tion (8) the well known solution, equation (4), for the infinite sheet of charge carrying
a charge density σ [C m−2] having the well known fact that the field is independent of
the height s. The second term which corrects for a finite radius is correct to first order
in s, and has just a linear dependence on the height, s, above the surface. In fact it’s
not at all obvious from equation (5) that in the limit of very large s the electric field
falls off like the square of the distance, as it must do in accordance with Coulomb’s law.
This is however demonstrated by equation (6).
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Logo of the Flat Earth Society (www.tfes.org)

Artist’s impression of the flat-earth.

Some people believe that the Earth is flat (en.wikipedia.org/wiki/Modern
flat Earth societies). That is, that it has exactly this shape of a hockey puck;
that the north pole is at the centre and that the antarctic ice is distributed around the
rim. I got to wondering whether we could test this hypothesis by measuring the accel-
eration due to gravity, g, at different distances, s, above the surface of the Earth. After
all, if the Earth is spherical then g ∝ 1/s2 whereas if we could assume that the disc had
a very large radius, then like the infinite sheet of charge g would be the same at any
height above the earth and this would be an easy way to convince the flat-earthers that
they are wrong. Actually a friend pointed out to me that this is a false logic because the
same argument (assuming an infinite radius) applied to the Earth would also result in
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g being independent of the height. Let’s start by seeing how this arises from Coulomb’s
law. The analogy can be made with the electrostatic case, very simply by replacing
charge in Coulomb with mass in kg and making the substitution

1

4πǫ0
−→ G

where G = 6.674 × 10−11 m3 kg−1 s−2 is the universal gravitational constant. You all
know from Gauss’s law that the electric field at a point outside a uniformly charged
sphere of radius RE is

E =
1

4πǫ0

Q

(RE + s)2
=

1

4πǫ0

4

3
πR3

E ρ
1

(RE + s)2

where Q is the total charge and ρ is the charge density. The distance from the surface
to the field point is s. So I can use this result to write down the acceleration due to
gravity, or force per unit mass, gE, (cf. force per unit charge, E) at a height s above
the surface of a perfectly spherical Earth with uniform mass density ρ. (From now on,
ρ will always mean mass density, whereas up to now I have used ρ for charge density.)
So,

gE =
4

3
π GR3

E ρ
1

(RE + s)2
(9)

Illustrating equation (9)

Just as I did in equation (7) I want to write this as a term that is independent of the
height plus a correction term for the finite curvature (radius) of the Earth. So I expand

(RE + s)−2 = R−2
E

(

1 +
s

RE

)

−2

= R−2
E

(

1− 2
s

RE

· · ·
)

and then to first order in s/RE

g
(1)
E =

4

3
π GρRE

(

1− 2s

RE

)

(10)
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Of course equations (9) and (10) are the same at the surface of the Earth where s = 0.
In the case of the disc, I can do the same and define by comparison with equation (5),
the acceleration due to gravity a distance s above the “north pole” of the flat earth
having a distance R between the “north pole” and the “antarctic rim” and the depth,
or thickness, T ,

gD = G 2πρ
[

T +
√
R2 + s2 −

√

R2 + (s+ T )2
]

(11)

And to first order, from equation (7) I can write

g
(1)
D = 2πGρT

(

1− 2s+ T

2R

)

(12)

If you compare equations (10) and (12) it becomes much less obvious that I can tell
whether I’m on a large flat plate or the surface of a large sphere because to zero order in
either case g is independent of the height above the surface and the first order correction
is in both cases linear in the height.
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Acceleration due to gravity at a height s km above the Earth and
above the flat disc. Both have the same density ρ = 5 515 kg m−3;
the Earth’s radius is RE = 6 371 km; the radius and thickness of
the disc are R = 20015 km and T = 4820 km. Exact results are gE,

equation (9) and gD, equation (11); linear approximations are g
(1)
E ,

equation (10) and g
(1)
D , equation (12). Because I was constrained

to have the flat-earth’s radius equal to half the circumference of
the Earth and for us to experience the same force of gravity at the
surface, the Earth and flat-earth masses are not the same: they are
6× 1024 kg and 7× 1023 kg respectively.

Now the astronomers and Earth scientists have measured the radius and mass density
of the Earth and we believe we know that RE = 6 371 km and ρ = 5 515 kg m−3. We
also feel that the acceleration due to gravity is 9.8 m s−2 (N kg−1). On the other hand
the flat-earthers must hold that the radius of the disc is the distance between the north
and south poles, which they will have measured by walking and boating till it became
too cold to continue, and so R = πRE = 20 015 km. They will also have to accept that
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the density is ρ = 5 515 kg m−3 since they take no issue with the Earth scientists about
the density of rock and so on. Indeed they feel the same gravitational pull as we do,
and using equation (11) it turns out that the thickness of the disc or “depth” of the
flat earth is T = 4 820 km. As my friend pointed out it is not a good approximation to
neglect the finite radius. If I use just the first term in equation (12) which is equivalent
to using Gauss’s law as in equation (4) then I find that the acceleration due to gravity
is 11.15 N kg−1. Because of this I may not assert that gD is independent of the height
above the surface of the flat earth and so I cannot so easily confound the flat-earthers.

All the same it is instructive to compare the two cases. Here I have plotted the acceler-
ation due to gravity for the Earth and the flat-earth in both the exact formula and to
first order.

In the left hand figure which looks at low heights from zero to 100 km it is clear that
the height dependence is much stronger for the Earth than for the flat-earth and this
may convince the flat-earthers. In both cases the slope is very close to linear and for

the Earth the linear approximation is close to exact. The approximation g
(1)
D has the

right slope, but there is a constant error of 0.02 N kg−1 which arises because T/R is
not that small for our geometry. In the middle figure you can see more clearly that the
gravitional field is falling off like s−2 as it should, equation (9); this is still not evident
for the flat-earth: according to the right hand figure you have to get to nearly 10000 km
away (which is more than twice its thickness and half its radius) before it starts to look
like a “point mass”. This second difference between the two cases may convince the
flat-earther but it would be hard to get that far away to make the measurements.

Mind you, in a post-truth argument worthy of the United States President, I read that
some flat-earthers don’t anyway accept the existence of gravity. Their claim is that the
reason we feel it is that the flat-earth is accelerating in a direction normal to the disc
at exactly 9.8 m s−2. By now we must be going pretty fast; so don’t tell them about
special relativity. . .
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4CCP1501 Simple Harmonic Motion

1. Free oscillation

We are to solve Newton’s second law, force = mass × acceleration, as a differential
equation,

m
d2x

dt2
= −kx

which we write

ẍ = −ω2

0
x (1)

by using two dots to indicate a second derivative with respect to time. We will use one
dot to indicate the first derivative. We have also combined the two constants, m, the
mass and k, the spring constant, to define an angular frequency,

ω2

0
=

k

m

We’re not mathematicians, we just want a solution of this thing; so try x = Aest. Then
by simple differentiating, we have

x = Aest ; ẋ = sAest ; ẍ = s2Aest

We only have to put this back into (1) to see that

s2Aest + ω2

0
Aest = 0 −→ s2 + ω2

0
= 0 −→ s = ±iω0

So we have two solutions:

x = Aeiω0t and x = Ae−iω0t

The theory of second order, linear differential equations tells us that the most general
solution is a linear combination of the two solutions with two arbitrary coefficients, that
we will call A1 and A2:

x = A1e
iω0t + A2e

−iω0t

= (A1 + A2) cosω0t+ i(A1 − A2) sinω0t

= A cosω0t+B sinω0t (a)

= C cosφ sinω0t+ C sinφ cosω0t (b)

= C sin(ω0t+ φ)

In going from line (a) to line (b) I have changed from the variables A and B to variables
C and φ by making these two definitions,

A = C sinφ and B = C cosφ

because then I can use the usual formula for sin(a+ b) to arrive at the last line.
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Now what we have is
x = C sin(ω0t+ φ)

ẋ = v = Cω0 cos(ω0t+ φ)

To fix the, up to now arbitrary, constants requires us to know “boundary conditions.”
Let’s suppose that at t = 0, x = x0, say, and v = v0, the initial velocity. These conditions
give,

x0 = C sinφ , sinφ =
x0

C
(c)

v0 = Cω0 cosφ , cosφ =
v0
Cω0

(d)

Now, square and add (c) and (d),

C =

√

x2

0
+

v2
0

ω2

0

and divide (c) by (d)

φ = arctan
x0ω0

v0

Finally, if we start off the oscillator at t = 0 with v0 = 0 and x = xm, for example we
pull out the spring to maximum deflection, xm, hold it still (v0 = 0) and let it go; then
the solution is

x = xm sin(ω0t+
1

2
π) = xm cos(ω0t)

2. Damping

To the differential equation (1), which is after all Newton’s second law—force equals
mass times acceleration—we add an additional force, −bẋ. This force is proportional

to the velocity, which is what you’d expect. Try swimming in syrup: the faster you
swim the bigger is the drag, or viscous, force. So now we need to solve the differential
equation

mẍ+ bẋ+ kx = 0

which we re-write as

ẍ+
b

m
ẋ+ ω2

0
x = 0

We define a new constant, Z, such that

b

m
= 2Zω0

is the frictional force per unit mass and unit speed. Now our differential equation is

ẍ+ 2Zω0ẋ+ ω2

0
x = 0

As before we try
x = Aest ; ẋ = sAest ; ẍ = s2Aest



4CCP1501 Simple Harmonic Motion Page 3 of 9 (29 September 2017)

and so
s2 + 2Zω0s+ ω2

0
= 0

leads to
s = ω0

(

−Z ±
√
Z2 − 1

)

(2)

and the general solution must be

x = A1e
st + A2e

−st (3)

Critial damping is defined as the condition Z = 1. For that case we define

bcrit = 2mω0 = 2
√
mk

and we give a name to Z by
b

bcrit
= Z

being called the damping factor, or damping ratio.

Underdamping is the condition Z < 1 or b < bcrit. This is usually the most interesting
case, and for which

Z2 − 1 < 0

meaning that there are two roots to (2), namely,

s1 = ω0

(

−Z + i
√
1− Z2

)

s1 = ω0

(

−Z − i
√
1− Z2

)

and then (3) is

x = e−Zω0t

(

A1e
i

√
1−Z2ω0t + A2e

−i

√
1−Z2ω0t

)

We then simplify this in the same manner as for equations (a) and (b):

x = Ce−Zω0t sin
(√

1− Z2ω0t+ φ
)

= Ce−αt sin(ωDt+ φ)

where

α =
1

2

b

m
= Zω0

is called the damping constant, and

ωD = ω0

√
1− Z2 = ω0

√

1−
1

4

b2

mk
< ω0

is the damped frequency.
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Again, if at t = 0, x = xm and v = 0, the solution associated with these boundary
conditions is

x = xm e−αt sin

(

ωDt+
1

2
π

)

= xm e−αt cosωDt

which is the result I give you on page 6 of Lecture 3.

3. Driven oscillators

In real life we are less interested in an oscillator that is oscillating at its natural frequency,
ω0, or its natural damped frequency, ωD, than in the behaviour of an undamped or
damped oscillator when we choose to drive it at some frequency, ω, that we choose.
Situations of this phenomenon are ubiquitous in physics and engineering. Try and write
down some half a dozen examples of your own.

3.1 Undamped driven oscillator

The oscillator is driven by a periodic force of angular frequency ω and amplitude F0.
That means we have one more force to add in to Newton’s second law, namely

F = F0 sinωt

and force = mass× acceleration now reads

mẍ = F0 sinωt− kx (4)

Eventually the oscillator has no choice but to vibrate at the frequency of the driving
force, whether it likes it or not, so we must have,

x = A sinωt

ẋ = Aω cosωt

ẍ = −Aω2 sinωt

Equation (4) now reads

−mAω2 sinωt+ kA sinωt = F0 sinωt

That is,

A =
F0

k −mω2
=

F0/k

1− ω2

ω2

0

=
As

1− ω2

ω2

0

using

ω0 =

√

k

m
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the natural frequency of the undamped oscillator. We call As the static amplitude and
we call A the dynamic amplitude; their ratio is called the magnification factor,

Ds =
A

As

=

(

1−
ω2

ω2

0

)

−1

If the driving frequency is less that the natural frequency the magnification factor is
positive and the displacement is in phase with the driving force. Conversely if ω > ω0,
Ds < 0. An amplitude cannot be negative, so we’ll have instead, for this case, to use
the solution

x = −A sinωt

which implies a phase difference of π (180◦) between the displacement and the driving
force. Thirdly, if ω = ω0, Ds → ∞ and we have resonance. In real life this never
happens as there is always damping. But interesting things do happen when we drive
an oscillator at a frequency close to its natural one.

3.1 Damped driven oscillator

Now we include the velocity dependent damping force into equation (4):

mẍ = F0 sinωt− bẋ− kx

or
mẍ+ bẋ+ kx = F0 sinωt (4a)

Eventually after transients have died away, the oscillator must vibrate at the frequency
of the driving force. It may not like it and it will protest unless the driving frequency is
close to the natural frequency of the undriven oscillator. Its reluctance to cooperate is
reflected in a reduction in amplitude. Nearer to resonance the amplitude is large. The
so called resonance curve or relation between amplitude and driving frequency is what
we will be seeking in the mathematical development that follows. The oscillator will
necessarily vibrate at the frequency of the driving force, but it will not necessarily be
in phase with it. Hence the solution for the amplitude must look like

x = A sin (ωt− φ)

ẋ = Aω cos (ωt− φ)

ẍ = −Aω2 sin (ωt− φ)

when I plug these into (4a) I get

m
[

−Aω2 sin (ωt− φ)
]

+ b [Aω cos (ωt− φ)] + kA sin (ωt− φ) = F0 sinωt

= F0 sin (ωt− φ+ φ)

Rearranging this I have

A
(

k −mω2
)

sin (ωt− φ) + Abω cos (ωt− φ)

= F0 [sin (ωt− φ) cosφ+ cos (ωt− φ) sinφ]
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Now, equate the coefficients of sin(ωt− φ) and cos(ωt− φ) and obtain

Abω = F0 sinφ

A
(

k −mω2
)

= F0 cosφ

We square and add these two, recalling that sin2 φ+ cos2 φ = 1,

F 2

0
= A2

[(

k − ω2
)

+ b2ω2
]

which means that we have, for the dynamic amplitude,

A =
F0

√

(k −mω2)2 + b2ω2

=
F0/k

√

(

1− mω2

k

)2

+ b2ω2

k2

We also divide our two equations to find the phase difference, or phase angle, φ, between
the oscillator and its driving force,

tanφ =
bω

k −mω2

We can simplify the formulas for A and φ using these definitions that we have encoun-
tered already in these notes,

ω0 =

√

k

m
, b = 2mZω0 , As =

F0

k

We also define the frequency ratio,

r =
ω

ω0

Then the magnification factor is

Ds =
A

As

=
1

√

(1− r2)2 + (2rZ)2
(5)

and the phase angle is

φ = arctan
2rZ

1− r2
(6)

What is the frequency, ωmax, say, that gives us the greatest amplitude? Or to put
the question another way, what is the resonant frequency? We need to minimise the
denominator in (5); we do this in the usual way by setting its first derivative with
respect to r equal to zero and solving for r which will then give us ωmax/ω0.

d

dr

[

(

1− r2
)2

+ (2rZ)2
]

= 0
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leads to

ωmax = ω0

√
1− 2Z2 (7)

which is neither ω0, nor ωD = ω0

√
1− Z2.

What is the maximum ampltitude; Amax, say? Put (7) into (5) and neglect Z4 when
compared to Z2. We find

Amax

As

=
1

2Z
=

mω0

b
≈ Q

which is the “quality factor”, and using As = F0/k and ω2

0
= k/m we get

Amax =
F0

bω0

On page 9 (below) are two graphs I’ve taken from wikipedia showing a set of resonance
curves and phase angles for a driven damped oscillator. On the abscissa is plotted the
frequency ratio, r. They use the phrase “amplification ratio” for the magnification factor
and have used the symbol ζ for the damping factor, Z. The first is essentially a plot
of equation (5). In the second, note how in the case of the undamped forced oscillator
there is an abrupt change from in phase to 180◦ out of phase as r goes through one, as
we discuss on page 5 of these notes. Note how the frequency ωmax is always smaller than
the natural frequency ω0 but appears to approach it as the peak becomes narrower, that
is, the damping becomes less.

There are three interesting cases.

(i) If r ≪ 1 the driving frequency is much smaller than the natural frequency of the
oscillator,

ω ≪ ω0

Then the dynamic amplitude is close to the static amplitude,

A ≈ As

and the phase difference is

φ ≈ arctan 0 = 0

so the displacement and force are in phase.
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(ii) If r ≈ 1 then
ω ≈ ω0

and
A

As

≈
1

2Z
≈ Q , the quality factor

Also,

φ ≈ arctan∞ =
1

2
π

so the displacement and force are out of phase by 90◦.

(iii) If r ≫ 1, then ω ≫ ω0 and therefore

A

As

∝
ω2

0

ω2
=

1

r2

which is the shape of the high frequency tail of the resonance curve. The displacement
and force are out of phase by 180◦, for the same reason as given on page 6 for the
driven undamped oscillator.
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4CCP1501 Mass on a vertical spring

In lecture 2 I used a horizontal mass on a spring so that I could introduce you to simple
harmonic motion without worrying about the force of gravity acting on the mass in
addition to the force due to the spring. But don’t worry about gravity in the case of a
mass on a spring. Here’s why.

Imagine I hang a mass on a vertical spring having somehow turned off gravity. Then
the spring will feel no force and will be relaxed; the tension in the spring is zero. Let us
say that in this condition when there is neither force on the mass or the spring that the
position of the mass is at x = 0. Now I contrive to turn on gravity and the mass descends
and stretches the spring by an amount x1, so it is now in the position x = x1. The force
on the mass is mg and this is therefore the tension in the spring. If the spring constant
is k, the force (or tension) per unit extension then

x1 =
mg

k
(1)

Now I pull down the mass to the amplitude A before I release it and so the total extension
of the spring is x1+A and so the total tension in the spring is

Fspring = −k(x1+A)

= −kx1 − kA

= −mg − kA

The total force on the spring is this tension plus the force due to gravity so

Ftotal = Fspring +mg

= −mg − kA+mg

= −kA

This is just the same as for the horizontal spring and now I don’t need to invent a
frictionless surface. So the vertical and horizontal springs obey the same equation of
motion—the gravity cancels out in the former and is absent in the latter.


