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Pressure as Lagrange multiplier—
incompressibility and Euler’s equations

The incompressibility paradox

It is conceptually difficult, if not impossible, to admit the existence of a solid or fluid
which is literally incompressible. Think of a line of particles connected by totally rigid
rods; if I apply a force to the particle at the end, there is no way that the particles
further down can experience the fact that a force has been applied. The same goes for
a three dimensional solid whose bonds are ideally rigid, if an external isotropic stress is
applied. In this way, pressure, which is a thermodynamic state variable, has actually no
influence on the state of the macroscopic body: either solid or fluid, which presents us
with a paradox. Simply put, the bulk modulus cannot be infinite. A popular question in
past times that was supposed to puzzle the “man on the Clapham omnibus” was, what
happens when an irresistible force meets an immovable object?

On the other hand, incompressibility, div v = 0, is a cornerstone of fluid dynamics and a
postulate embedded in the Navier–Stokes equations as usually stated. How are we to think
of pressure in an incompressible fluid? One answer put forward by Arnold Sommerfeld
is that pressure is the Lagrange multiplier in the Hamiltonian mechanics that guarantees
that dilatation vanishes in any virtual displacement of the fluid particles.

The swimmer in trouble

Here is an exciting story. A lifeguard on one of those tall chairs sees a swimmer in distress
out to sea and someway off to the right. How can she get to the swimmer in the shortest
time? She could take a straight line but she knows that she can run on sand much faster
than she can swim. So should she take the shortest possible distance in the water and
run to the point perpendicular to the swimmer (point P in figure 1) and enter the water
at a right angle to the shore? But then the length of the path she takes is much longer.
There is a compromise, which is the bent path as shown in figure 1. The calculation is
an easy one. The total distance is the distance on sand, `s, plus the distance in water,
`w; and if she runs with a speed cs on sand and cw in water, then the time to get to the
swimmer is,

t =
`s
cs

+
`w
cw

.

The constants that define the problem are hers and the swimmer’s perpendicular distances
to the shore, ys and yw, and the distance parallel to the shore, xw, from the swimmer to the
point in the water perpendicular to the lifeguard, who luckily knows some trigonometry
and some calculus. Using Pythagoras, the distances she has to travel on sand and in
water are,

`s =
√
y2s + x2 and `w =

√
(xw − x)2 + y2w ,

where x is the distance along the shore from her perpendicular projection to the point at
which she enters the water. Using calculus, she seeks the value of x that minimises the
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time, t:
dt

dx
= 0

=
1

cs

1

2

2x√
y2s + x2

+
1

cw

1

2

−2 (xw − x)√
(xw − x)2 + y2w

.

FIGURE 1

This leads to,
1

cs

x√
y2s + x2

=
1

cw

(xw − x)√
(xw − x)2 + y2w

,

or, simply,
1

cs

x

`s
=

1

cw

xw − x
`w

,

which she can solve for x. There is a happy ending: she reaches the swimmer in time.

Principle of least time

Another very illuminating way to write the same result is,

sin θs
sin θx

=
cs
cw

,

and this carries over into Snell’s law of refraction of light since the ratio of the speeds of
light in two media is the inverse ratio of the refractive indices.

In fact what we have here is an example of Fermat’s principle of least time, which is the
basis of all geometric optics. The path between the two fixed points, L and S, that takes
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the least time to travel is that path for which the path integral is stationary,

δ

∫ t1

t0

dt = 0 .

The δ indicates a virtual displacement of the path; of all the possible paths between the
fixed points, the path actually taken is that which renders the path integral minimal, or
stationary. This forms the basis, not only of Fermat’s formulation in geometric optics but
Feynman’s scarcely credible formulation of quantum mechanics as a “sum over paths”.
Here’s a quote from Freeman J. Dyson in a statement in 1980, as reported in Quantum
Reality: Beyond the New Physics, (1987) by Nick Herbert.

Thirty-one years ago [1949], Dick Feynman told me about his “sum
over histories” version of quantum mechanics. “The electron does
anything it likes,” he said. “It just goes in any direction at any
speed, forward or backward in time, however it likes, and then you
add up the amplitudes and it gives you the wave function.” I said
to him, “You’re crazy.” But he wasn’t.

Principle of least action

FIGURE 2

Figure 2 shows the trajectory of a particle as it travels from a point at time, t0, to
somewhere else arriving at a time t1. The particle is experiencing an applied force and
possesses a certain kinetic energy, K, by virtue of its mass and velocity. This could
indeed be a representation in coordinate space of a collection of particles having positions
rk and velocities ṙk. The trajectory (or trajectories) can be discovered using Newton’s
laws. Alternatively there is a variational principle that may be used, which is contained
within Hamilton’s formulation of classical mechanics. Rather as in Fermat’s principle,
nature chooses that path in configuration space for which the action is stationary and
minimal. I don’t have the space here to derive Hamilton’s principle. First you need
d’Alembert’s principle and then you consider variations of the trajectory under certain
conditions. Firstly, as in the Fermat case above, the end points cannot be varied; secondly
it is asserted that at any configuration along the path which is varied by a small amount,
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as indicated in figure 2, if the system is at configuration rk in the actual path then its
variation to rk + δrk happens at the same time. That is to say, all variations are subject
to

δt = 0 .

Under those two conditions we imagine displacing the path, as in figure 2, by a small
amount, entailing a variation of the kinetic energy, δK, and employing an amount of
work, δW , against the applied forces. Then Hamilton’s principle (which I haven’t proved
here) is, ∫ t1

t0

(δK + δW ) dt = 0 .

If the forces are conservative then the work derives from a potential energy function, V ,
and the more usual statement of Hamilton’s variational principle is then,

δ

∫ t1

t0

(K − V ) dt = 0 ,

and (K − V ) dt is the increment of action. Kinetic energy take away potential energy is
called the Lagrangian, L. The statement is then equivalent to

δ

∫ t1

t0

Ldt = 0 .

The time integral of the Lagrangian is stationary and minimal for the path that is dictated
by nature (Newton’s laws).

Pressure as Lagrange multiplier

Finally we can get to the paradox of the incompressible fluid. Here is Sommerfeld’s
argument. Within a fluid in motion we impose a virtual displacement of certain particles
of fluid:

δu = ı̂ δux + ̂ δuy + k̂ δuz .

The dilatation is

δe =
∂δux
∂x

+
∂δuy
∂y

+
∂δuz
∂z

= div δu , (1)

which vanishes if the fluid is incompressible. We need to apply Hamilton’s principle to
this variation; and to ensure that the dilatation vanishes we include the constraint of a
Lagrange multiplier, λ, ∫ t1

t0

dt

∫
dτ (δkv + δwv + λδe) = 0 , (2)

in which the second integration is over the volume of the fluid, with volume element,
dτ = dxdydz. It is understood that K and W are referred to unit volume of fluid (so as
in my usual notation, these are rendered in lower case with a superscript, v). δwv is the
so called virtual work per unit volume entailed in displacing the trajectory as in figure 2.
We will have,

δwv = fv · δu ,
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where fv is the force per unit volume; and

kv =
1

2
ρv2 ,

where ρ is the mass density and v is the velocity field; hence,

δkv = ρv · δv .

Furthermore,

v =
du

dt
,

and so its virtual variation is,

δv = δ
du

dt
=

d

dt
δu .

Now, ∫ t1

t0

ρv · δv dt =

∫ t1

t0

ρv · d

dt
δu dt = −

∫ t1

t0

ρ
dv

dt
· δu dt ,

using partial integration, noting that the boundary term vanishes by virtue of the condi-
tion that the variation is zero at the end points of the trajectory. That disposes of the
first term in the integrand of (2).

For the third term, using (1), we are interested in∫
λ div δu dτ ,

which can be recast using the derivative of a product rule,

div (λδu) = gradλ · δu + λ div δu .

This leads to, ∫
λ div δu dτ = −

∫
gradλ · δu dτ + a surface integral.

The surface integral follows from Gauss’s divergence theorem and Sommerfeld shows this
to vanish. Then Hamilton’s integral (2) becomes,∫ t1

t0

dt

∫
dτ

(
−ρdv

dt
+ fv − gradλ

)
· δu = 0 .

Because the constraint (1) has been taken care of through the Lagrange multiplier, λ, any
virtual displacement of the trajectory may be made and since thereby δu is arbitrary, the
contents of the large parentheses must vanish. This secures Euler’s equations (Navier–
Stokes for an incompressible inviscid fluid),

ρ
dv

dt
= fv − grad p ,
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as long as we identify λ with the hydrodynamic, or thermodynamic pressure. Thereby,
as Sommerfeld argues, the hydrodynamic pressure in an incompressible fluid is the reac-
tion force (per unit area) against the constraint of incompressibility. An analogy is the
pendulum whose mass is acted upon by gravity; the Lagrange multiplier that insists the
trajectory follows a circle is proportional to the tension, or centripetal plus gravitational
force, in the rod or string. Let me show you how this works.

The (non linear) pendulum

The pendulum bob has a mass, m, and a weightless string or rod, of length `. We use
Cartesian coordinates with the origin at the pivot, and the y-axis pointing downwards.
In order to confine the mass to a circle of radius `, we need x2 + y2 = `2, so we have this
constraint:

g(x, y) = x2 + y2 − `2 = 0 .

The kinetic energy is

K =
1

2
m
(
ẋ2 + ẏ2

)
,

and the potential energy is
V = −mgy ,

because y increases downwards. The Lagrangian is

L =
1

2
m
(
ẋ2 + ẏ2

)
+mgy ,

and if I include the constraint I need,

0 = δ

∫ t1

t0

(
L+ λg(x, y)

)
dt

= δ

∫ t1

t0

(
1

2
m
(
ẋ2 + ẏ2

)
+mgy + λ

(
x2 + y2 − `2

))
dt

in which λ is the Lagrange multiplier. It must be possible to make the variations in the
independent variables, x, y and λ separately. Taking, first, x, we need

δ

∫ t1

t0

(
1

2
mẋ2 + λx2

)
dt

to vanish. Now
1

2
δ
(
mẋ2

)
= mẋδẋ = mẋ

d

dt
δx .

I can integrate that kinetic energy term by parts and the boundary terms will vanish by
definition of the path, however it is varied, having fixed end points at t0 and t1:∫ t1

t0

mẋ
d

dt
δx dt = −

∫ t1

t0

mẍδx dt .

The remaining constraint term is

δ
(
λx2
)

= 2λxδx ,
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and therefore the required variation with respect to x is,∫ t1

t0

(−mẍ+ 2λx) δx dt .

This must hold for an arbitrary variation in x, δx, and hence the contents of the paren-
theses vanish: mẍ = 2λx.

For the variation in y,

δ

∫ t1

t0

(
1

2
mẏ2 +mgy + λy2

)
dt = 0 ,

we follow similar reasoning. The kinetic energy term is integrated by parts as before; the
potential energy term is δ(mgy) = mgδy and the constraint term is δ(λy2) = 2λyδy. So
the y variation leads to, ∫ t1

t0

(−mÿ +mg + 2λy) δy dt .

Again, the contents of the parentheses must vanish and we have secured these two equa-

tions,†

mẍ = 2λx (1)

mÿ = mg + 2λy (2)

I convert now to angular coordinates for convenience:

x = ` sin θ

y = ` cos θ ,

from which,
ẋ = `θ̇ cos θ

ẏ = −`θ̇ sin θ

ẍ = `
(
−θ̇ sin θ + θ̈ cos θ

)
ÿ = `

(
−θ̇ cos θ − θ̈ sin θ

)
and substituting these into (1) and (2), I obtain,

m`θ̈ cos θ −m`θ̇2 sin θ = 2λ` sin θ

−m`θ̈ sin θ −m`θ̇2 cos θ = mg + 2λ` cos θ .

† Varying with respect to λ gives∫ t1

t0

(
x2 + y2 − `2

)
δλ dt = 0

and so for arbitrary variation, δλ, we recover the constraint, x2 + y2 = `2 as you might
have expected.
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We multiply the first by cos θ and the second by − sin θ and add, resulting in,

m`θ̈ = −mg sin θ ,

which secures the equation of motion for a pendulum,†

θ̈ +
g

`
sin θ = 0 . (3)

For small oscillations, sin θ ≈ θ resulting in the well-known equation of motion,

θ̈ +
g

`
θ = 0 ,

whose solution, as is well known, gives the angular frequency,

ω =

√
g

`
,

and hence period,

T = 2π

√
`

g
.

The solution for the non linear pendulum equation (3) is much harder to obtain and
involves an elliptic integral of the first kind.

Now lets find the physical origin of the Lagrange multiplier. Start with the constraint,
x2 + y2 = `2, with ` constant. Taking a time derivative twice, we get, firstly,

2xẋ+ 2yẏ = 0 , or, xẋ+ yẏ = 0 ;

and, secondly,
ẋ2 + xẍ+ ẏ2 + xÿ = 0 .

We put these into our equations of motion (1) and (2):

ẋ2 + ẏ2 +
2λ`2

m
+ gy = 0 ,

using x2 + y2 = `2; which, solving for λ results in,

λ = − m

2`2
(
ẋ2 + ẏ2 + gy

)
.

In angular coordinates, ẋ2 + ẏ2 = `2θ̇2, this is,

λ = −m
2`

(
g cos θ + `θ̇2

)
,

and so,
−2λ` = m`ω2 +mg cos θ ,

since θ̇ = ω the angular velocity (freqency). The first term in this is the centripetal
acceleration, and the second term is the acceleration due to gravity. These two terms add
to give the tension in the string, T = −2λ`.

† The mass cancels either side; or if you prefer, Einstein’s equivalence principle asserts that
gravitational and inertia mass are equal.
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