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Introduction and revision of quantum mechanics

Classical and quantum definitions of state

In classical mechanics we ask for the dynamical variables of a particle (its position, mo-
mentum, kinetic energy, angular momentum). All these are functions of just the two
conjugate variables of Hamiltonian mechanics, viz. position r and momentum p. So the
kinetic energy is

T =
1

2
mv2 =

p2

2m
where m is the mass of the particle; angular momentum is

L = r×p

The dynamical variables are given deterministically by Newton’s laws, once we provide
the initial conditions.

In quantum mechanics, we ask for the same quantities of a particle. But they are more
elusive to obtain. These are furnished by Schrödinger’s equation which is also deter-
ministic, again once the initial conditions are provided. However unlike Newton’s laws
Schrödinger’s equation does not mention p or r as variables. Instead Schrödinger’s equa-
tion is a differential equation for the complex wavefunction Ψ(r, t) which is a function of
r and time, t,

ih̄
∂Ψ
∂t

=HΨ

and H is the Hamiltonian. If the forces on the particle are conservative, then

ih̄
∂Ψ
∂t

= −
h̄2

2m
∇2Ψ + V (r)Ψ

in which the first term on the right hand side is the kinetic energy (we prove this later).

Our job is to deduce the dynamical variables, in particular r and p from Ψ(r, t). This is
especially difficult because we cannot even in principle know both these simultaneously
to arbitrary precision. We are hampered by the uncertainty principle.

Ψ represents the state of the particle and is sometimes called the probability amplitude.
This is because Schrödinger’s equation does not tell us exactly the position of the particle.
It tells us that the probability that the particle may be found at time t in a small region
of space dr about r is

Ψ∗(r, t)Ψ(r, t) dr

Normalisation ensures the probability that the particle is to be found somewhere in space
is one,

1 =
∫

Ψ∗(r, t)Ψ(r, t) dr

It’s important to establish that a wavefunction can be normalised. Generally speaking
it must go rapidly to zero at infinity. Many proofs in quantum mechanics rely on this.
Therefore free particles and particles subject to periodic boundary conditions such as
found in solid state physics need careful handling.

Once normalisation is established at, say, t= 0 the wavefunction remains normalised while
being propagated according to Schrödinger’s equation.
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Confusion can arise over what is meant by the state of a particle. Einstein writes,

The attempt to conceive the quantum-theoretical description as the
complete description of the individual systems leads to unnatural
theoretical interpretations, which become immediately unnecessary
if one accepts the interpretation that the description refers to en-
sembles of systems and not to individual systems.

In classical mechanics the state of a particle is indeed uniquely provided by its position and
momentum. In quantum mechanics the state Ψ furnishes us with merely a probability.
This is inescapable. The probability refers to an average value measured over a collection
(ensemble) of identically prepared particles. So when you consider the probability, say, of
your particle having a momentum, p, you are expected to imagine a very large number
of particles prepared in state Ψ each having its momentum measured at the same time.
The average value of the these is the momentum corresponding to the state Ψ.

It is often convenient to represent a state as a “vector” and instead of writing a wavefunc-
tion as an explicit function of r and t, namely Ψ(r, t), we use a more abstract notation
and represent it as the state vector

∣

∣Ψ
〉

.

Imagine a unit vector in three dimensional space,

u = u1ı̂ + u2̂ + u3k̂

If you measure the vector in terms of the three cartesian coordinates, you’ll be able to
determine the coefficients u1, u2 and u3 which describe exactly all you need to know
about the vector. But imagine if you knew that the vector has some such coefficients but
whenever you measured them you always found only one of these to be non zero. In other
words whenever you measure the vector you’ll find it’s one of the three cartesian basis

vectors ı̂ , ̂ or k̂. Your act of measurement has moved it from where it was onto one of
the three cartesian axes. Moreover you can’t predict what measurement you’d get. In
fact if you prepare many identical copies of this vector and get all your friends to measure
one then they may get different answers. You will find when you pool your results that ı̂

was found with a probability u2
1, ̂ was found with a probability u2

2 and k̂ was found with

a probability u2
3. Strange, but true. That’s what happens in quantum mechanics.

The state vector of a quantum mechanical particle can always be written as a linear
combination of basis functions. These basis functions are usually solutions of the time
independent Schrödinger equation in the potential in which the particle is moving. It’ll
be easier to follow this once we do some examples. A good example is the particle in the
infinite, one dimensional square well of width a. Its basis states, or eigenstates analogous
to the cartesian coodinates ı̂ , ̂ or k̂ are†

ψn(x) = 〈x|n〉 =

√

2
a

sin
(nπ
a
x
)

† Here you should recall your level 2 notes. There you used the upper case Ψ(r, t) to denote the state and the lower

case ψn(r) to denote the eigenstate labelled with its quantum number n. We shall do the same here.
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Associated with each eigenstate is the total energy (just kinetic energy in this case since
V = 0) or eigenvalue,

En =
n2π2 h̄2

2ma2

The state of a particle in the square well may be any linear combination of eigenstates,
but when we measure, say, its energy we will be certain to find it to be one of the En with
probabilities depending upon the state it was in before measurement. The most likely
outcome is not necessarily the average that we would find upon measuring a large number
of replicas of the state. But in the jargon the average value is unfortunately called the
“expectation value.”

Fundamental postulates of quantum mechanics

It would be nice if quantum mechanics as a discipline could be deduced from a small
number of agreed postulates. This is the case in electrodynamics, all of which follows
from the principle of superposition and Coulomb’s Law; you need also to admit the prin-
ciples of special relativity and Maxwell’s equations and electromagnetism follow. Likewise
thermodynamics is a beautiful and powerful edifice all built on just the first and second
laws. Various authors propose various sets of postulates, or axioms, from which quan-
tum mechanics may be developed. Some are quite abstract. In his Lectures on Physics,
vol III, R. P. Feynman is clear that all the mysteries of quantum mechanics can be traced
back to the double slit experiment. Waves, of course interfere and produce interference
patterns. Bullets, which “come in lumps” do not. Electrons come in lumps, but they
do produce interference. But if you make a measurement of which slit a particular elec-
tron went through, the interference goes away and they behave like bullets. In quantum
mechanics, what interference means is that when two or more outcomes are possible the
total probability is not the sum of the individual probabilities; instead it is the square of
the sum of probability amplitudes. Of course, it’s the same in optics; in an interference
experiment, such as the double slit, you first add the amplitudes of the interfering waves
and only then square them to find the intensity. Here’s what Feynman says, starting with
his three postulates,

(1) The probability of an event in an ideal experiment is given by the
square of the absolute value of a complex number φ which is called
the probability amplitude:

P = probability

φ = probability amplitude

P =
∣

∣φ
∣

∣

2
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(2) When an event can occur in alternative ways, the probability am-
plitude for the event is the sum of the probability amplitudes for
each way considered separately. There is interference:

φ = φ1 + φ2

P =
∣

∣φ1 + φ2
∣

∣

2

(3) If an experiment is performed which is capable of determining
whether one or another alternative is actually taken, the probabil-
ity of the event is the sum of the probabilities for each alternative.
The interference is lost:

P =
∣

∣φ1
∣

∣

2
+

∣

∣φ2
∣

∣

2

One might still like to ask: “How does it work? What is the ma-
chinery behind the law?” No one has found any machinery behind
the law. No one can “explain” . . . No one will give you any deeper
representation of the situation. We have no ideas about a more
basic mechanism from which these results can be deduced.

We would like to emphasise a very important difference between

classical and quantum mechanics. We have been talking about the
probability that an electron will arrive in a given circumstance. We
have implied that in our experimental arrangement (or even in the
best possible one) it would be impossible to predict what would
actually happen. We can only predict the odds! That would mean,
if it were true, that physics has given up on the problem of try-
ing to predict exactly what will happen in a definite circumstance.
Yes! Physics has given up. We do not know how to predict what

would happen in a given circumstance, and we believe now that
it is impossible—that the only thing that can be predicted is the
probability of different events. It must be recognised that this is a
retrenchment in our earlier ideal of understanding nature. It may
be a backward step, but no one has seen a way to avoid it.
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Even more abstract and mathematical postulates are made by L. E. Ballentine in “Quan-
tum mechanics—a modern development.” His postulates are these:

1. To each dynamical variable there is a Hermitian operator whose

eigenvalues are the possible values of the dynamical variable.

This is consistent with the remarks above about the measurent of the kinetic energy of a
particle in the square well.

2. To each state there corresponds a unique state operator, which must

be Hermitian, non negative and of unit trace.

We cannot pursue this further here, it becomes too mathematical and at our level of
quantum mechanics we can avoid dealing with the so called density operator, or density
matrix, altogether. (But if you go into research in computational condensed matter theory
or quantum chemistry you will run into the density matrix all the time.) Ballentine’s
postulates are sufficient for him to derive the two most central planks (no pun intended)
of quantum mechanics, namely Schrödinger’s equation, and the representation of the
momentum as the differential operator

px = −ih̄
∂
∂x

from the Galilean transformations that apply to homogeneous space. In this way, Ballen-
tine’s approach is the most powerful and economical.

Our purposes are best served by the less economical postulates in Cassels’ book “Basic
quantum mechanics.” Here they are.

1. Wave functions and probability density. The state of a parti-

cle is represented by a complex function, Ψ(r, t), such that
∣

∣Ψ
∣

∣

2
dr

is the probability of finding the particle at the time t in the element

of volume dr at the point r.

2. Linear superposition of states. If two possible states of the

particle are represented by Ψ1 and Ψ2, then a possible state of the

particle is also represented by Ψ = c1Ψ1 + c2Ψ2, where the coeffi-

cients c1 and c2 are arbitrary complex numbers, independent of r

but possibly functions of t.
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3. Observables and operators. Observables are represented by lin-

ear operators which multiply, differentiate, or otherwise act on the

wave function to produce a new function.

4. Predictions of the result of measuring an observable. When

Â operates on a particular wavefunction, ψn, say, it may produce

a function which differs from ψn, only by a constant multiplicative

factor, An:

Âψn = Anψn

If so, then a measurement of A is certain to yield the numerical
value An. The particle is said to be in a eigenstate of A belonging
to the eigenvalue An and the wave function ψn is said to be an
eigenfunction of A belonging to the eigenvalue An.

5. Hermitian operators. Only a certain kind of linear operator is

suitable for representing an observable. If Ψ1 and Ψ2 are any two

wavefunctions, then Â must satisfy

∫

Ψ∗

1

(

ÂΨ2

)

dr =
∫

(

ÂΨ∗

1

)

Ψ2dr

where the integrals are taken over the space available to the particle.

Operators which satisfy this relation are called Hermitian.

6. Momentum and energy operators. The operator which repre-

sents momentum is assumed to be

p̂ = −ih̄∇
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In cartesian coordinates,

p̂x = −ih̄
∂
∂x

p̂y = −ih̄
∂
∂y

p̂z = −ih̄
∂
∂z

If the kinetic energy is p2/2m then obviously the kinetic energy operator is

T̂ = −
h̄2

2m
∇2

In one dimension

T̂ = −
h̄2

2m
∂2

∂x2

hence the form of the Hamiltonian given at the beginning of these notes. In fact, this
postulate is redundant. The operator form of p may be deduced from Schrödinger’s
equation by finding the time derivative of the average value of r (see Griffiths, section
1.5).

7. Time dependence of Ψ. The rate of change of Ψ is given by

ih̄
∂Ψ
∂t

= ĤΨ

Stationary states

Generally speaking there are two steps involved in solving a quantum mechanical problem
once a Hamiltonian is given (basically once the potential is known in which the particle
is moving). First Schrödinger’s equation is solved subject to the boundary conditions to
find the state as a function of position and time. Secondly one finds the average value of
the operator one is interested in. Any individual measurement of an observable, typically
position, momentum or energy, will always result in one of the eigenvalues of its operator
r̂, p̂ or Ĥ . And if two operators do not commute (for example r̂ and p̂) then we cannot
determine the eigenvalues of both simultaneously. One the other hand measurement of an
observable over a large number of identically prepared particles will result in an average
value (“expectation value”). For example a measurement of the position will yield an
average value,

〈

r(t)
〉

=
∫

Ψ∗(r, t) rΨ(r, t) dr

=
〈

Ψ |r|Ψ
〉

The second line is an alternative way of writing it, in terms of the state vector
∣

∣Ψ
〉

and
its hermitian conjugate

〈

Ψ
∣

∣.
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The dynamical variables r and p are called “conjugate” in classical Hamiltonian mechan-
ics. In quantum mechanics their x, y and z components do not commute. You can easily
prove that using

p̂x = −ih̄
∂
∂x

x̂p̂x − p̂xx̂ = [x̂, p̂x] = ih̄

(You do this by introducing some arbitary function of x and employing the chain rule—
please be sure you can do it).

Niels Bohr called the pair of variables whose operators do not commute complementary

(see Cassels, page 32; Schiff, page 8). Another set of non commuting observables that
we will discuss in detail in the lectures are the three cartesian components of the angular
momentum vector. One simply cannot know the x, y and z components of an electron’s
spin. I want to quote here some paragraphs from Griffiths even though we have not yet
covered the details of spin and its eigenvalues. You may come back to it again during the
lectures on angular momentum. For now what you need to know is that any of the three
components of spin of a spin- 1

2
particle can take on one of only two eigenvalues, namely

± 1

2
h̄. Since only one can be known at any time because their operators, Ŝx, Ŝy and Ŝz do

not commute, by convention we choose the z-component as special (it’s simply a matter of
how we choose our cartesian coordinate system) and we write its two eigenvalue equations
as

Ŝzχ+ =
1

2
h̄ ; Ŝzχ− = −

1

2
h̄

in which χ+ and χ− are the two eigenvectors; sometimes they’re written simply |+〉, and
|−〉, or | ↑ 〉, and | ↓ 〉 to denote up and down spin. The operator corresponding to the

x-component of spin has eigenvectors denoted by superscripts, χ(x)
+ and χ(x)

−
, and the

same eigenvalues as Sz,

I’d like now to walk you through an imaginary measurement sce-
nario involving spin 1

2
, because it serves to illustrate in very concrete

terms some of the abstract ideas we discussed back in Chapter 1.
Let’s say we start out with a particle in the state χ+. If someone
asks, “What is the z-component of that particular particle’s spin
angular momentum?”, we could answer unambiguously +1

2
h̄. For a

measurement of Sz is certain to return that value. But if our inter-
rogator asks instead, “What is the x-component of that particle’s
spin angular momentum?” we are obliged to equivocate: If you
measure Sx, the chances are fifty-fifty of getting either 1

2
h̄ or − 1

2
h̄.

If the questioner is a classical physicist, or a “realist” (in the sense
of Section 1.2), he will regard this as an inadequate—not to say
impertinent— response: “Are you telling me that you don’t know

the true state of the particle?” On the contrary, I know precisely

what the state of the particle is: χ+. “Well then, how come you
can’t tell me what the x-component of the spin is?” Because it
simply does not have a particular x-component of spin. Indeed it
cannot, for if both Sx and Sz were well-defined, the uncertainty
principle would be violated.
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At this point our challenger grabs the test-tube and measures the
x-component of its spin: let’s say he gets the value + 1

2
h̄. “Aha!”

(he shouts in triumph), “You lied! This particle has a perfectly
well-defined value of Sx: 1

2
h̄.” Well, sure—it does now, but that

doesn’t prove it had that value, prior to your measurement. “You
have obviously been reduced to splitting hairs. And anyway what
happened to your uncertainty principle? I now know both Sx and

Sz .” I’m sorry, but you do not: In the course of your measure-

ment, you altered the particle’s state; it’s now in the state χ
(x)
+ ,

and whereas you know the value of of Sx, you no longer know the
value of Sz. “But I was extremely careful not to disturb the parti-
cle when I measured Sx.” Very well, if you don’t believe me, check

it out: Measure Sz, and see what you get. (Of course he may get
+ 1

2
h̄, which will be embarassing to my case—but if we repeat this

whole scenario over and over, half the time he will get − 1

2
h̄.)

To the layman, the philosopher, or the classical physicist, a state-
ment of the form “this particle doesn’t have a well-defined posi-
tion” (or momentum, or x-component of spin angular momentum,
or whatever) sounds vague, incompetent or (worst of all) profound.
It is none of these. But its precise meaning is, I think, almost impos-
sible to convey to anyone who has not studied quantum mechanics
in some depth. If you find your own comprehension slipping, from
time to time (if you don’t, you probably haven’t understood the
problem), come back to the spin- 1

2
system: It is the simplest and

cleanest context for thinking through the conceptual paradoxes of
quantum mechanics.

Stationary states are those for which average values of observables do not depend on time.
They are best discovered by first solving the time independent Schrödinger equation which
will yield a set of energy eigenstates, ψn, with eigenvalues, En. An example, again, is
the square well, or the simple harmonic oscillator. As long as the Hamiltonian does not

mention time then a general stationary state is

Ψ(x, t) = ψn(x) e−iEnt/h̄

which follows from the time dependent Schrödinger equation by separation of variables.
This looks at first if it depends on time (as indeed it does through its phase factor). But

when you form
∣

∣Ψ
∣

∣

2
the result is independent of time because the exponential times its

complex conjugate is one.

Coherent superpositions of stationary states—get the particle moving!

The simplest example of a non stationary state is a superposition of two stationary states.
Suppose a particle is in a potential (it could for example be the square well potential) which
has eigenstates ψn(x) and eigenvalues En. We could prepare it in a linear combination of
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two of these, say the ground state and first excited state, at time t= 0,

Ψ(x,0) = c1ψ1(x) + c2ψ2(x)

This is called a “coherent superposition” because it will exhibit interference in the sense of
Feynman’s postulates (above). As long as the hamiltonian is not itself dependent on time
we know that each of these eigenstates is multiplied by a time dependent phase factor to
make a stationary state. In the same way the time dependence of our state is such that
at at time t,

Ψ(x, t) = c1ψ1(x)e
−iE1t/h̄ + c2ψ2(x)e

−iE2t/h̄

Now we ask what is the probablity of the particle being found at position x and time t.
This is

∣

∣Ψ(x, t)
∣

∣

2
=

(

c1ψ1(x)e
iE1t/h̄ + c2ψ2(x)e

iE2t/h̄
)(

c1ψ1(x)e
−iE1t/h̄ + c2ψ2(x)e

−iE2t/h̄
)

= c21ψ
2
1 + c22ψ

2
2 + 2c1c2ψ1ψ2 cos (E2 −E1) t/h̄

Note how the first parenthesis is the complex conjugate of the second as required when
you take the square of the absolute value of a complex number. Compare this with the
Feynman postulates. The probability is the sum of the uncorrelated probabilities plus the
third term which describes interference . Now the particle is moving sinusoidally in time;
it is no longer stationary.

If at some time t the energy of the particle is measured what will you find? Are you
surprised that you will get either E1 with probability c21 or E2 with probability c22? No
other result is possible. The measurement has destroyed the coherence; we’d better stop
here—we’re getting into quantum information theory. But does it worry you that the
measurement apparently violates the conservation of energy? Then remember Einstein’s
statement on page 2. If I have prepared many replicas of the same system then the average

over all my measurements will be c21E1+c22E2, which is the same as the expectation value
of the energy of the state at t= 0.


