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Solubility Product

1. Heat of formation and solubility of microalloying carbides and nitrides

We need to quantify the solubility of different transition metal carbides and nitrides,
particularly in austenite at high temperature. This is because transition metal carbides
play two crucial roles in microalloy and low alloy steels. (i) The more insoluble precipi-
tates, for example TiC, TiN, NbN, exist at high temperature and act as austenite grain
refiners, say, during hot rolling. NbC also has a very marked effect in retarding dynamic
recrystallisation of the austenite. (ii) The more soluble compounds, for example V4C3 or
VC, Mo2C and chromium carbides, will enter solution in the austenite during annealing
and can be precipitated as nano-precipitates to improve strength during cooling and
transformation to ferrite, say, by interphase precipitation, or during tempering after
a quench to strengthen martensite. Iron carbide is the most soluble of all. Actually
the more soluble compounds are those having the smaller enthalpies of formation (see
Figure 1). The alloy designer needs mathematical models and data that can be used to
predict the distribution of carbon, nitrogen and transition metal alloying elements as
functions of temperature—how much is in solution and how much exists as precipitates?
We’d also like to know the size, shape, habit and orientation relation, but that’s another
matter.

Figure 1: Heats of formation of some carbides and nitrides
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1.1 Case of one microalloying element and single precipitate composition

Consider a chemical reaction

MmXn(ppt) = mM(sol) + nX(sol) (1.1.1)

which describes the dissolution of a carbide or nitride MmXn precipitate (ppt), for exam-
ple NbN or V4C3 into solution (sol) in austenite at some temperature T . In equilibrium
the chemical potentials of components M and X are the same in the precipitate and in
the solution, so we have

µM,ppte = µM,sol and µX,ppte = µX,sol (1.1.2)

Expressing the chemical potentials in terms of standard chemical potential and activity,
this becomes

µ◦
M,ppte +RT ln aM,ppte = µ◦

M,sol +RT ln aM,sol

µ◦
X,ppte +RT ln aX,ppte = µ◦

X,sol +RT ln aX,sol

Now, the chemical potential of the precipitate is, in view of (1.1.1) and (1.1.2)

µppte = mµM,ppte + nµX,ppte

= mµM,sol + nµM,sol

and therefore, again in terms of activity and standard state,

µ◦
ppte +RT ln appte = mµ◦

M,sol +mRT ln aM,sol + nµ◦
X,sol + nRT ln aX,sol

and rearranging this last equation, I get,

RT (m ln aM,sol + n ln aX,sol − ln appte) = µ◦
ppte −mµ◦

M,sol − nµ◦
X,sol

which is

RT ln
amM,sol a

n
X,sol

appte
= −∆G◦

sol

= RT lnK

having defined
∆G◦

sol = mµ◦
M,sol + nµ◦

X,sol − µ◦
ppte

as the standard Gibbs free energy of solution of the precipitate. This equation also
serves to define the equilibrium constant K for the chemical reaction. I now have

amM,sol a
n
X,sol = appte exp (−∆G◦

sol/RT )

The activity of a pure defect-free solid phase is constant (usually taken to be one) and
for a dilute solution Henry’s law tells us that the activity of a solute is proportional
to the concentration x expressed as an atomic fraction. The proportionality constants,
γ, are called activity coefficients and are constant, independent of temperature and
composition. So if xM and xX are the concentrations of M and X in the solid solution
and γM and γX are activity coefficients, we now have

(γMxM)m (γXxX)n = appte exp (−∆G◦
sol/RT )
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Baker	  -‐	  Nu9ng	  Figure 2: Dark field images of (V,Mo)C interphase precipitates in
an ultra high strength 0.1C–0.2V–0.5Mo steel (courtesy of Peng
Gong and W. Mark Rainforth)

HRTEM	  images	  of	  nanometer-‐sized	  carbides	  obtained	  from	  the	  specimen	  isothermally	  treated	  at	  650°C	  for	  
90min:	  (a)	  nanometer-‐sized	  (V,	  Mo)C;	  (b)	  the	  corresponding	  fast	  Fourier	  transformed	  (FTT)	  image	  from	  the	  
same	  area	  of	  (a);	  (c)	  HRTEM	  FFT	  of	  nanometer	  sized	  carbide	  from	  red	  area	  in	  (a);	  (d)	  nanometer-‐sized	  (V,	  
Mo)4C3;	  (e)	  the	  corresponding	  fast	  Fourier	  transformed	  (FTT)	  image	  from	  the	  same	  area	  of	  (d);	  (f)	  HRTEM	  
FFT	  of	  nanometer	  sized	  carbide	  from	  red	  area	  in	  (a).	  	  

HRTEM	  images	  of	  nanometer-‐sized	  carbides	  obtained	  from	  the	  specimen	  isothermally	  treated	  at	  650°C	  for	  
90min:	  (a)	  nanometer-‐sized	  (V,	  Mo)C;	  (b)	  the	  corresponding	  fast	  Fourier	  transformed	  (FTT)	  image	  from	  the	  
same	  area	  of	  (a);	  (c)	  HRTEM	  FFT	  of	  nanometer	  sized	  carbide	  from	  red	  area	  in	  (a);	  (d)	  nanometer-‐sized	  (V,	  
Mo)4C3;	  (e)	  the	  corresponding	  fast	  Fourier	  transformed	  (FTT)	  image	  from	  the	  same	  area	  of	  (d);	  (f)	  HRTEM	  
FFT	  of	  nanometer	  sized	  carbide	  from	  red	  area	  in	  (a).	  	  

Figure 3: As figure 2 in high resolution: determination of orienta-
tion relation (courtesy of Peng Gong and W. Mark Rainforth)
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I can gather the three constants into a single constant, say, C = appte/γ
m
Mγ

n
X, and write

xmM x
n
X = C exp (−∆G◦

sol/RT )

The weight percentages of M and X, which we conventionally write as [M] and [X] are
proportional to the concentrations so the previous equation is equivalent to

[M]m[X]n = D exp (−∆G◦
sol/RT )

in which D is another constant involving the atomic weights of the components and
factors of a hundred to convert to percent. I find

D = C × 1002 (m+ n)2

m2AM/AX + 2mn+ n2AX/AM

where AM and AX are the relative atomic masses (or atomic weights) of the elements M
and X. All this defines the solubility product, ks,

ks = [wt%M]m[wt%X]n

= [M]m[X]n (1.1.3)

= D exp (−∆G◦
sol/RT )

Now I take logarithms to the base ten on both sides and I get

log ks = A−B/T (1.1.4a)

where the constants are

A = logD and B = ∆G◦
sol/2.303R (1.1.4b)

Then all the constants including changes from natural to base 10 logs, standard states
and conversions to weight percent are accounted for by fitting experimental data to
equation (1.1.4a). You will always find solubility product data in the metals handbooks
and literature given by quoting the constants A and B for a particular carbide or nitride
in austenite or ferrite. Of course the whole thing can be extended to multicomponent
precipitates, for example (V,Mo)(C,N) a carbonitride of vanadium and molybdenum
(see Figures 2 and 3) but it’s a mess to write down and problems such as on page 7
require a computer to solve.

Because of equation (1.1.4a) if we plot ln ks (or 2.303 log ks) against 1/T we get a
straight line with a negative slope of magnitude ∆G◦

sol/R. This is called an Arrhenius
plot; examples are shown in Figures 4 and 5.

On the other hand, because of equation (1.1.3) it is clear that plotting [wt%M]m against
[wt%X]n at any given temperature will result in a curve resembling a hyperbola as
shown, for example, in the schematic in Figure 6. The way to interpret this graph is
as follows. At the required temperature, say T2, and given concentrations of M and X
(these could be, say, vanadium and nitrogen) we wish to know how much of the vandium
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and nitrogen are in solution and how much are tied up in vanadium nitride precipitates.
If we place a point on the graph corresponding to the known nominal compositions then
in equilibrium if that point falls to the left and below the curve the microstructure will
be a single phase austenite with V and N in solution. If the point falls above and to the
right of the hyperbola then the microstructure will be a two phase mixture of VN and
austenite solid solution. The curve is therefore a graph of the solubility limit at that
temperature—if the concentrations of V and N lie on a point to the right and above the
solubility limit the that limit is exceeded and some of these elements must come out of
solution and form precipitates.
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24?8. This shows the substantially higher solubility of
the carbide than the nitride and the significant decrease
in solubility in ferrite compared with austenite. A more
detailed discussion of the solubility of VC and VN in
austenite and VC in ferrite is provided by Gladman.3

For comparison, a selection made by Aronsson28 of
solubility of the transition metal carbides and nitrides in
austenite, of importance in microalloyed steels, is given
in Fig. 3, where it is apparent that vanadium carbide
and nitride are the most soluble carbide and nitride of
each group. Strid and Easterling29 have also collected
relevant solubility data.

An important aspect of most transition metal carbides
and nitrides, is that with few exceptions, they are
mutually soluble, as is shown by the data presented by
Goldschmidt.30 It has been suggested that this mutually
solubility occurs when the atomic size difference
between the two carbide or nitride forming elements is
not greater than 13%. Houghton31 was among the first

to acknowledge the effect of mutual solubility of
carbides and nitrides in microalloyed steels. He pre-
sented a quasi-regular solution thermodynamic model
which described the precipitation of complex carbides
and nitrides from austenite for two extreme cases:

(i) no mixing between precipitates
(ii) complete miscibility while maintaining in both

cases equilibrium between precipitates and
solutes in austenite.

His results were then compared with those of other
models, whose predictions are in general intermediate
between (i) and (ii).

While the binary solubility equation approach is a
useful guide, sophisticated methods have been evolved
using dedicated software, which take into account the

1 Solubility of vanadium carbide in austenite and ferrite

2 Solubility of vanadium nitride in austenite and ferrite154

3 Solubility products, in atomic per cent, of carbides and

nitrides in austenite as function of temperature28

Table 1 Solubility of vanadium carbide in austenite and ferrite

Austenite Ferrite

Equation A B Type Ref. Equation A B Ref.

1 29500 6.72 VC 16 5 212 265 8.05 23
2 210 800 7.06 V4C3 21 6 27050 4.24 22
3 29400 5.65 V4C3 22 7 27667 4.57 1
4 26560 4.45 V4C3 18

Table 2 Solubility of vanadium nitride in austenite and
ferrite154

Austenite Ferrite

Equation A B Ref. Equation A B Ref.

8 27700 2.86 17 11 29700 3.90 17
9 28700 3.63 16 12 27061 2.26 27
10 27840 3.02 26 13 27830 2.45 24

Baker Processes, microstructure and properties of V microalloyed steels

Materials Science and Technology 2009 VOL 25 NO 9 1085

Figure 4: Arrhenius plots of solubility products in austenite (left)
and ferrite (right)

Figure 5: More Arrhenius plots of solubility product in iron. Note
that the most soluble carbides and nitrides are those lines towards
the top of the figure—having the largest solubility products.
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Figure 6: Schematic solubility product isotherms. Note that these
two lines define the solubility limits at two temperatures. This is a
kind of phase diagram—the solubility limit lines separate the single
phase solid solution from the two phase solution plus precipitate
fields.

Of course the next question is, how much precipitate do I expect? It’s actually quite
simple. Take the example of vanadium nitride. We first define these quantities.

VT : wt% V in alloy

NT : wt% N in alloy

[V] : wt% V dissolved in austenite

[N] : wt% N dissolved in austenite

VVN : wt% V present as VN

NVN : wt% N present as VN

AV : relative atomic mass of V

AN : relative atomic mass of N

Then it’s easy to see by the mass balance that the total weight percentage of vanadium
can be divided into that which is dissolved and that which belongs to the precipitate.
The same goes for nitrogen, so we have,

VT = [V] + VVN (1.1.5)

NT = [N] + NVN (1.1.6)

The atomic percentages of V and N tied up in VN are equal because of stoichiometry.
So the weight percentages are in the ratio of the atomic weights, leading to

NVN = VVN
AN

AV

(1.1.7)
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And, by definition of the solubility product we have

ks = [V][N] (1.1.8)

The rest is algebra. Let’s first find a formula for the amount of dissolved vanadium, [V].
From (1.1.8) we have

[V] =
ks
[N]

(1.1.9)

and

[N] = NT − NVN

= NT − 14

51
VVN

= NT − 14

51
(VT − [V])

using (1.1.5) and (1.1.6) and then substituting (1.1.7). Then (1.1.9) leads to a quadratic
equation for the amount of dissolved vanadium, namely,

1

51
[V]2 +

(
1

14
NT − 1

51
VT

)
[V] − 1

14
ks = 0 (1.1.10)

This can be solved using the usual formula for quadratic equations and once we have
[V] we can find VVN and NVN, the amounts of vanadium and nitrogen that are tied up
in the precipitate as functions of the nominal compositions, VT and NT , of V and N
and their atomic weights; and the solubility product which is a measurable function of
the temperature. If we had more than one possible compound, or if we are interested in
carbonitrides then the thermodynamic principles remain the same. The algebra becomes
a lot more complicated and requires the solution of a number of simultaneous equations.
The alloy designer uses commercial computer packages.

Now examine Figure 7. This illustrates in part the perennial problem arising from the
unfortunate fact that metallurgists always work in weight percent, whereas the physics
and chemistry of course refers to atom percent—because atoms combine one to one in
chemical reations and so on. If the stoichiometry were one to one (which we assume in
all the examples here) and if we were plotting atomic percent not weight percent then all
points lying on a 45◦ diagonal would represent stoichiometric compositions. Because we
actually plot weight percent then the stoichiometric line has a slope given by the ratio of
the atomic weights of the two components. Now suppose we are interested in austentite
with nominal concentrations of vanadium and nitrogen indicated by the point P. We
contruct a line with the same slope as the stoichiometric line that passes through P
and it does not intersect the origin because in general an alloy does not contain equal
atomic percentages of V and N. Using this construction we take the intersection of
the stoichiometric line passing through P with the solubility limit curve and at the
intersection we read off the concentrations of V and N that remain in solution in the
austenite.
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Figure 7: Construction for the determination of the amounts of V
and N in solution and in precipitate. Note (A−B)/(D−C) = 51/14.

Figures 8–11 are examples of solubility limit, or solubility product, curves for a number
of microalloying elements in austenite. As I have mentioned, the importance of this
cannot be overemphasised as it allows the materials engineer to design alloy compositions
and heat treatment schedules to obtain a desired microstructure and hence desired
mechanical properties. In particular this gives control of austenite grain refiners and
solution and reprecipitation to achieve particle hardening by interphase precipitation or
through tempering.

Figure 8: Isotherms for NbC in austenite Figure 9: Isotherms for TiC in austenite
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Figure 10: Isotherms for VN in γ-phase 1.3% Mn steel
Figure 11: Isotherms for AlN in austenite

Figure 12 illustrates what you have learned up to now. Suppose you are interested,
for the sake of simplicity, in a steel with a single microalloying element, titanium, at
0.1 wt%. How can you optimise hardening precipitates that form after cooling from
austenite by varying the carbon concentration? The upper diagram shows solubility
limits (products) at three temperatures. Imagine that the steel requires an isothermal
anneal at 1200◦ during which all the Ti and C are to be dissolved so that they can
subsequently form, say, interphase precipitates as the austenite transforms to ferrite on
cooling. You will need at least a stoichiometric amount of carbon or there won’t be
enough to tie up all the Ti as TiC and some Ti must inevitably remain in solution
in the austenite and in the resulting ferrite—this may be fine if you are seeking some
solution hardening. This is the situation if the carbon concentration falls in region A
in the lower diagram. As the carbon increases from zero the amount of Ti and C that
will be available to combine will increase until the stoichiometric line intersects the Ti
concentration. Note that as we increase the carbon concentration the equivalent of our
point P in Figure 7 is moving to the right along the horizontal broken line in the upper
diagram. In region A there is more Ti than C atomic percent; beyond the stoichiometric
point there is more C than Ti atomic percent. Therefore in region B, the amount of
carbide that can form is fixed and at its maximum amount, given the 0.1 wt% of Ti; the
remaining carbon will probably form iron or other carbides on cooling—no bad thing,
perhaps. At the boundary of regions B and C the point P moves from the left and below
the solubility limit to above and to its right so that at the soaking temperature of 1200◦

the equilibrium microstructure is austenite plus TiC. This means that not all the Ti and
carbon become dissolved and that TiC that forms at 1200◦ is likely to grow coarse and be
useless at particle hardening. At the same time these coarse precipitates tie up some of
the Ti and C that would otherwise be available to form fine interphase precipitates and
in consequence the cooled alloy will have the TiC fraction “limited by solubility”. The
conclusion is that in this case using any carbon concentration in the range of region B
will give optimum fine carbide fraction, since if the carbon concentration is less the
carbide fraction is limited by stoichiometry and if it’s greater some Ti and C will be
tied up as useless (possibly even deleterious) large second phase particles.
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Figure 12: Effect of stoichiometry on the precipitation of TiC in a
microalloyed steel

Figure 13 shows how these ideas are exploited in the design of fine grain miroalloyed
niobium steels. Notice that there are two effects of increasing the annealing temperature
before air cooling. (i) The yield stress increases overall. (ii) The Hall-Petch slope
increases. This is because at the higher annealing temperatures, more NbC is dissolved
and therefore available for interphase precipitation in the ferrite in order to contribute
to the particle hardening.
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Figure 13: Effect of austenitising temperature on the yield strength
of a 0.1C–0.6Mn–0.09Nb steel

2. More than one microalloying element

The designer of microalloy steels has a wide range of microalloying elements at her
disposal. These are many transition metal elements as well as Al. Here is a list.

Vanadium. Vanadium carbide is very soluble in γ, even close to the A3 temperature.
Vanadium nitride is less soluble and is used for grain refinement by including up to
0.01% N in vanadium steels (which normally have no more than 0.15wt% V). The
benefit offered by high solubility of vanadium carbide is the extensive formation of
interphase precipitates during controlled rolling below A1, coiling or cooling. Vanadium
microalloy steels are complicated by the existence of a number of stoichiometries and
crystal structures of vanadium carbides. Their heats of formation are plotted in figure 14
and it is seen that at 0K the thermodynamically most stable is monoclinic V6C5. VC is
the expected cubic phase having rocksalt crystal structure and V4C3 is this same phase
having a quarter of the carbon sites as vacancies.



MSE307: Solubility Product 2018 (Tony Paxton and Vivian Tong) Page 12 of 29

3

a) b) c) d)
e)

FIG. 1. Structures of the simulated unit cells for a) VC, b) V4C3-Cubic, c) V4C3-Hexagonal, d) V6C5-Hexagonal and e)
V6C5-Monoclinic. The darker atoms represent carbon and the lighter ones vanadium.

TABLE I. Calculation details for the DFT calculations performed. The units for the smearing temperature and the cut-off
energy are Eh

Calculation details

k-point k-points Bands Smearing Cut-off
grid temperature energy

V 18×18×18 190 12 0.001 36
C 19×19×19 400 32 0.001 36
VC 9×9×9 85 15 0.001 36
V4C3-Cubic 8×8×8 20 48 0.001 39
V4C3-Hexagonal 7×7×1 25 144 0.001 36
V6C5-Hexagonal 4×4×2 16 192 0.0009 36
V6C5-Monoclinic 3×2×2 6 252 0.001 36
γ − Fe 5×5×5 63 272 0.0005 46
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FIG. 2. Calculated binary V-C phase diagram at 0 K and 0 Pa.
The lines show the convex hull connecting stable phases.

The energies are calculated within the normalised vol-
ume range [0.8, 1.2] with a step of 0.05. The results of
the calculations in terms of the formation enthalpy are
shown in Fig. 3. We find that hexagonal V4C3 is more
energetically favourable than cubic V4C3. As noted ear-
lier, hexagonal and monoclinic V6C5 are degenerate in

energy47. The coefficient BEOS0 of the fit, corresponding
to the zero pressure bulk modulus is presented in Table
IV. A reasonably good agreement is found with published
theoretical27,31,32,34,51 and experimental values52. In the
cases of VC and cubic V4C3 the largest errors are 1.8%
and 0.9%, respectively.

VII. ELASTIC PROPERTIES

Components of the Voigt stiffness matrix were calcu-
lated using the stress-strain method.53 The procedure is
based on Hooke’s law, σσσ = CCCεεε, where σσσ is the measured
stress tensor, εεε the Green-Lagrange stress tensor, and
CCC the stiffness tensor. The method is divided into the
following steps:

1. The system is structurally relaxed using the BFGS
algorithm until all stresses are minimised.

2. Six different deformation gradients are applied—one
at a time—to the relaxed structure in order to modify in-
dependently each component of the deformation vector.
For each deformation gradient, four different magnitudes
are used, namely –0.01. –0.005, 0.005 and 0.01.

3. A relaxation of the atoms is done for each of the
24 previously deformed configurations without modifying
the geometry of the unit cell. The resulting stresses are
measured.

Figure 14: Heats of formation of competing vanadium carbide
phases, calculated using first principles quantum mechanics (den-
sity functional theory).

Figure 15 shows the wide differences in solubility product, especially at high tempera-
ture, in comparing VC and V4C3.

Figure 15: Solubility limits of vanadium and carbon based on cubic
VC (solid lines) and V4C3 (broken lines). This is only consistent
with figure 14 if the V4C3 is taken to be hexagonal, not cubic.
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Niobium. Carbonitrides dissolve only at higher soaking temperatures, and so particle
strengthening is restricted. Principally the carbonitrides act as γ grain refiners and very
markedly supress recystallisation of the austenite under controlled rolling (Ti and V
have similar but less effective roles). The change in solubility in the range 900–1300◦C
leads to significant deformation induced precipitation.

Titanium. TiN is very insoluble and will precipitate in the liquid steel to promote
grain refinement. Whatever Ti remains after TiN precipitation will result in TiC which
has similiar solubility to NbC. Ti also is a sulphide former and so will dissolve in MnS
particles and reduce their ductility during hot rolling, thus preventing their elongation.

Aluminium addition as a deoxidant has to some extent been superseded by vacuum
melting. Any Al not combined into alumina and taken off from the liquid remains to
provide AlN precipitates, having a relatively low solubility product. AlN has a different
crystal structure compared to the common transition metal carbonitrides and so it
provides a “mutually exclusive” precipitate system (see section 2.1, below).

Molybdenum is primarily added to improve hardenability, but it will combine with
vanadium carbonitride to form VxMo1−xCzN1−z (see figure 3)

This all means that the treatment in section 1.1 is too elementary for the general mi-
croalloyed steel. We need to consider the equilibrium between more than one microalloy
element, carbon and nitrogen and one or more, possibly complex, carbonitrides. How-
ever, if you keep your head, you will see that as in section 1.1, the mathematics while
messy-looking is really very easy and only involves solving quadratic, cubic or quartic
equations. The last two, of course, require a computer or graphical solution. So take a
deep breath and study sections 2.1 and 2.2 below.

We study two cases in these notes. The simpler is the case in which two (or more) mutu-
ally exclusive compounds are precipitated. This is the situation in which the compounds
have different crystal structures and are regarded as simultaneously in equilibrium with
the austenite matrix. The second, rather more difficult problem, is the one in which
one or more precipitates exist in equilibrium and are miscible, by virtue of their having
the same crystal structure, containing more than one microalloy element or more than
one interstitial element (C or N). This latter case divides into two: the case of a single
transition metal carbonitride and the case of complex carbonitrides.

2.1 Mutually exclusive precipitates

If two or more compounds may precipitate having different crystal structures then we can
consider a number of chemical reactions such as (1.1.1) as occuring independently and
retaining the same solubility products as if the others were not occurring. It is expected
that this is the case in vanadium microalloy steels although it is not yet known whether
more than one of the vanadium carbides in figure 14 are to be found simultaneously in
the same steel. There is currently some evidence of cubic VC and cubic V4C3 being
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found in the same steel but this is not necessarily a case of mutual exclusivity if we
regard these as the same phase having variable carbon vacancy concentrations. This
would then amount to a third scenario in addition to the two discussed in the previous
paragraph and we will not discuss this much further in these notes.

Instead I will use the example of hexagonal AlN existing in equilibrium with cubic VN
at some temperature in austenite. We write two reactions as in equation (1.1.1),

AlN(ppt) = Al(sol) + N(sol) kA = [Al][N] (2.1.1a)

VN(ppt) = V(sol) + N(sol) kV = [V][N] (2.1.1a)

The solubility products are those of the individual reactions as taken from measurements
in ternary Fe-V-N and Fe-Al-N alloys. Actually kA � kV and so if sufficient Al were
present in the steel then it will tie up a stoichiometric amount of N in AlN up to the
solubility limit given by kA. Any remaining N could then result also in VN precipitation
if the solubility limit kV is exceeded. Therefore the alloy designer can manipulate the
amounts of VN and AlN precipitates by adjusting the weight percentages of V, Al and
N, and by choosing appropriate soaking and rolling temperatures.

Essentially as in section 1.1 we are tasked with finding out, at a given temperature,
how much of each microalloy element is present in solution and how much is tied up
as precipitate in equilibrium. In the case of just one microalloy element, V, and one
interstitial element, N, we arrived rather easily at equation (1.1.10). In the case of
mutually exclusive precipitates only, we may use the simplification that the activities of
the precipitates are one as before since they exist as immiscible pure phases which have
separate crystal structures. Let us now proceed to a solution.

The total nitrogen content in weight percent is

NT = [N] + NAlN + NVN

namely the sum of the contributions to the total weight percentages from that in solution
(so called free nitrogen), and those tied up in the separate chemical compounds. Because
of the 1:1 stoichiometry we also know that

NAlN =
14

27
AlAlN

NVN =
14

51
VVN

because the atomic weights of N, Al and V are 14, 27 and 51. Combining these last
three we have,

NT = [N] +
14

27
AlAlN +

14

51
VVN

The weight percent of Al present as AlN is the same as the difference between the total
Al, AlT , and the dissolved Al; and similarly for the V and so we write,

AlAlN = AlT − [Al]

VVN = VT − [V]
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and putting these into the previous equation results in

NT = [N] +
14

27
(AlT − [Al]) +

14

51
(VT − [V]) (2.1.2)

The two nitrides must each be present in amounts consistent with the independent
solubility products, and so we can substitute for [V] and [N] from (2.1.1) and hence
eliminate these in favour of the known solubility products to obtain a closed equation
for the dissolved nitrogen. Firstly the last equation becomes, on substitution from (2.1.1)

NT = [N] +
14

27

(
AlT − kA

[N]

)
+

14

51

(
VT − kV

[N]

)
I can multiply both sides by [N] and collect terms and I arrive at

1

14
[N]2 +

(
1

27
AlT +

1

51
VT − 1

14
NT

)
[N] −

(
1

27
kA +

1

51
kV

)
= 0 (2.1.3)

It is worthwhile to compare this to (1.1.10). It is also a simple quadratic equation that
can be solved analytically in terms of known quantities: the composition of the steel
and the solubility products at the soaking temperature. There will not be a solution
if there is only one precipitate and there may be nonsensical solutions turning up—for
example if dissolved amounts predicted by equations (2.1.1) turn out to be greater that
the total amounts then there will be negative quantities of precipitate predicted!

While there is a number of approximations attendant on the derivation of (2.1.3) its
predictions have been found to be in accord with experiment as shown in the example
in figure 16.

Figure 16: Comparison between prediction and experiment of free
nitrogen in Al-V-N steels
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As in the simpler case of section (1.1), remember that once you have [N] by solution
of equation (2.1.3) then you can use mass balance and (2.1.1) to find the amounts of
Al and V in both solution and in the two separate compounds and find the amount of
nitrogen remaining in solution.

You can go further and use the equations that you have to construct a phase diagram
showing the one, two and three phase regions as functions of the microalloy contents.
Proceed as follows. From (2.1.1), since [N] is the same in both equations because the
nitrogen is simultaneously in equilibrium with both precipitates we know that

[Al]

[V]
=
kA
kV

(2.1.4)

I now take [V] from this equation and I take [N] from (2.1.1a) and put them into (2.1.2)
which leads to

NT =
kA
[Al]

+
14

27
(AlT − [Al]) +

14

51

(
VT − kV

kA
[Al]

)

I now mulitply through by [Al] and collect powers in [Al] and I get this quadratic
equation, (

14

27
+

14

51

kV
kA

)
[Al]2 −

(
14

27
AlT +

14

51
VT − NT

)
[Al] − kA = 0

So far this is just another equation like (2.1.3) but this time for the dissolved Al rather
than N. But if I take the special case that the dissolved Al content is equal to the total
Al content, that is,

[Al] = AlT = Alpb (2.1.5)

then this defines Alpb as the weight percent of Al at the phase boundary between the two
phase γ+VN and the three phase γ+AlN+VN fields. In other words Alpb is the largest
concentration of Al that can be added to a vanadium containing steel while still pre-
venting the precipitation of AlN. Now if I apply the condition (2.1.5) to equation (2.1.2)
then the second term vanishes and as before using (2.1.1a) and (2.1.4) I find

14

51

kV
kA

Al2pb −
(

14

51
VT − NT

)
Alpb − kA = 0

which I can solve for Alpb. I can follow an identical procedure to find Vpb and so get
the locus of the γ+AlN / γ+AlN+VN phase boundary. This construction is shown in
figure 17.
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Figure 17: Calculated phase diagram

2.2 Carbonitrides

A simple carbonitride has a chemical formula MmCnNp. In complex carbonitrides, the
symbol M is taken to mean a combination of transition metal elements. In cases where
these phases occur in the rocksalt structure which consists of two interpenetrating fcc
lattices, then we expect the chemical formula to be MCxN1−x and 0 < x < 1. The
transition metal atoms occupy one sublattice and the interstitial elements the other.
(Equivalently you can think of this as an fcc transition metal with C and N atoms
occupying octahedral interstices—see Barrett and Massalski.) All of the sites in the first
sublattice are occupied (possibly by one of several transition metal elements randomly
placed). The second sublattice is occupied by C and N in the ratio x/1−x. But not all
sites might be occupied. Most transition metal carbonitrides are sub-stoichiometric—a
fraction of the sites are vacant. Figure 18 shows this effect in niobium carbonitrides
and the resulting measured lattice parameters. This means that we should write our
chemical formula as MCxNy 1−x−y, where stands for vacancy. As I mentioned in the
first paragraph of section 2.1, this amounts to a third scenario which we don’t look at
here. Instead we will focus for simplicity on simple or complex carbonitrides having a
1:1 ratio of transition metal to interstitial atoms.
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Fig. 3.--Lattice parameter us. composition in the system 
NbN-NbC. 

portant, when dealing with materials like niobium 
carbide to specify the amounts of oxygen or nitrogen 
present. Either of these impurities will change 
the lattice parameter if dissolved or, at least, make 
the sample appear richer in the metal. Thus, 
the various solid phase boundaries would appear 
to  be shifted to the left from their true positions. 
For example, a sample having an analyzed com- 
position of NbCo.eoo, which contains 0.2 weight % 
nitrogen would actually be NbCo.elr, the amount of 
niobium combined with nitrogen as NbN being sub- 
tracted. With this in mind, it became necessary to 
determine how rapidly oxygen and nitrogen would be 
eliminated from niobium carbide by heating and, 
to  a limited extent, \\-hat effect the remaining im- 
purity n-ould have. This is also an important 
(~orol1iir.c- t o  earlier m r k  by the authors on the 
variatioti of KliC lattice parameter with compo- 
sition. 

Two cxperiments 'vITere made and the results are 
listed in Tables V and JrI. In the first, separate 
samples of commercial grade NbC (Fansteel) 
were subJected to various heating times and 
temperatures in ai1 effort to produce samples con- 
taining a smaller and smaller amount of impurity. 
The powder mas contained in a graphite crucible 
during t hc: heating. Apparent)ly heating a t  1900' 
for 20 minutes is sufficient to drive o f f  most of the 
oxygen and iiitrogen contained in a previously re- 
acted sample. In Fig. 2 a comparison is made 
between the lattice parameter curve previously 
reported4 and the values for these impure materials. 
The arrow from each point, indicates the magnitude 
of the nitrogen correction. It is impossible to 
correct for oxygen since the form of the oxide is 
unknown. Txo conclusions can be dram-n : oxygen 
and nitrogen can be readily eliminated from NbC 
a t  the expense of free and combined carbon, and 
samples still containing these impurities will lie 
to the right of the published curve. 

TABLE V 
HEATING OF IMPURE KbC 

Uncor. Wt. % impurities 
combined Free 

Temp., Tilue, C to  Nb car- OXY- Kitro- 
nun. ratio bon Fen gen no, A. " C .  

KO heating 0.895 0.33 0.28 0.66 4.4697 
1300 5 ,903 .06 . I 5  .54 3.4681 
1650 10 ,924 .OO ,075 .17 4.4670 
1900 20 ,918 .OO ,052 .05 4.4658 
2200 120 ,917 . O O  ,017 .(JO 4.4661 

TABLE VI 
HEATING OF CONTAMINATED S h C  

Starting compn. Xb = 87.81 at. R 
c = 9 2 :  
N = 2 36 
0 = 0 . 5 8  (10 = 4 4(30 - 

100.00 

Heated for 1 hr. at 1450' 

Heated slowly to 1920' and 
continued for 30 min. 

r i n a l  compn. Xb = 9 0 . 5 3  
c = 9.02  
N = 0.30 
0 = 0.02  

99.87  

ao = 4.4G8 -!- extra lines 

(10 = 4 446 + extralines 

- 

Uncor. compn. XbCo.7; 
Cor. compn. NbCo.7~ assuming all nitrogen as S b S ~ . o o  

Table VI shows the results of the second experi- 
ment. Here, nitrogen and oxygen were added as 
Nbn' and Nb206 to pure XbC. Again the amount 
of nitrogen was reduced by a factor of ten and the 
oxygen essentially eliminated by heating in vacuo 
a t  1920' for about 30 minutes. Based on the 
change in lattice parameter, heating at  1450' for 
1 hour, apparently had very little effect. 

It is not known how rapidly these impurities 
would be eliminated in the region near SbzC. 
The impurity mould, however, have the same effect 
on the analyzed composition as descrihcd above. 

The effect of nitrogen in the KhC system has 
recently been reported by Braiicr 2nd Lesser.I5 
Figure 3 shows a line drawing of a niodd constnlcted 
by plotting their data as the ratios C/Sb, N/Kh 
and vacancies/ljb on the ternary axes and the lat- 
tice parameter on the wrtical axis. The lattire 
parameter curve for pure KbC is bnccd 011 Fig. 2. 
The surface thus created show that dissolved 
nitrogen causes a lowering of the lattice pnrametcr 
but in a manner dependent 011 the number of 
vacancies in the lattice. A small amouiit of 
nitrogen will cause a smaller decrease in a. at 
NbCo.9 than mould be produced if it were dissolved 
in IVbC0.7, for example. 

In addition, this figure makes it clear that a study 
of lattice parameter in any binary system in 
which the starting materials have a range of homo- 
geneity is not unique unless the amount of vacancy 
is specified. For example, Duivez and Ode1116 
give the variation in a. for several biliary systems 
including NbC-SbK. Based on the lattice param- 
eter gixlen, their XbC was nearly stoichiometric 
(4.470 A. = SbCo99), but the K b S  appar$ntly 
contained a large number of vacancies (4.379 A. g 

(15) G. Rraoer and R. Lesser, 2. Metallkunde, 60, 167 (1959). 
(16) P. Dunez and F. Odell, J. Electrochem. Soc. ,  97, 299 (19501. 

Figure 18: Measured lattice constants of cubic phases of niobium
carbonitride (J. Chem. Phys., 64, 1471 (1960))

2.2.1 Simple carbonitrides

Let us go through an analysis for NbCxN1−x using the same procedure that we have
employed in sections 1.1 and 2.1. I will make two further simplifying assumptions
regarding the activities of the components. Firstly assume that the activity coefficients
of all our microalloy elements and C and N are equal to one. This means that we are
working in the Henrian standard state in the dilute limit. This point is really academic
because in the end we fit the experimental data to an equation like (1.1.4a) and so all
the constants are rolled up into the fit. It works as long as the data does fit (1.1.4a). It
is not really possible to extend the method easily if the assumptions of constant activity
coefficient are not consistent with the observations.

The chemical reaction I am interested in is, by comparison with (1.1.1),

NbCxN1−x(ppt) = Nb(sol) + xC(sol) + (1 − x)N(sol) (2.2.1)

The solubility product associated with this reaction is, by association with equation
(1.1.3),

k = [Nb][C]x[N]1−x (2.2.2)
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so this depends on the stoichiometry of the carbonitride through x which is unknown
as a function of composition and temperature. If I break down the reaction (2.2.1) into
two half reactions I can assert that (2.2.1) is the sum of these two reactions

xNbC(in NbCN) = xNb(sol) + xC(sol) (2.2.3a)

(1 − x)NbN(in NbCN) = (1 − x)Nb(sol) + (1 − x)N(sol) (2.2.3b)

(I am using NbCN as a shorthand for NbCxN1−x.) These two reactions taking place
simultaneously assert an equilibrium in which in (2.2.3a) Nb and C in solution are in
equilibrium with the component NbC and in which in (2.2.3b) Nb and N in solution
are in equilibrium with the component NbN. Here we imply that NbC and NbN are
two components that make up the carbonitride. The fact that I’ve multiplied through
by x and 1 − x doesn’t change the reactions and so the solubility products for the two
reactions are

k1 =
[Nb][C]

activity of NbC in NbCN
(2.2.3c)

k2 =
[Nb][N]

activity of NbN in NbCN
(2.2.3d)

We now make our second simplifying assumption and assume that the carbonitride is an
ideal solid solution of NbC and NbN so that the activities of each of those components
are just x and 1−x respectively which are the concentrations of each of these components
of the carbonitride. Since we assume an ideal solution of NbN and NbC in NbCxN1−x

the activities in (2.2.3c) and (2.2.3d) are just the concentrations x and 1−x so solubility
products for the two half reactions are

k1 = [Nb][C]/x (2.2.3e)

k2 = [Nb][N]/(1 − x) (2.2.3f)

I raise the first of these equations to the power x and the second to the power 1−x and
multiply the two resulting equations together,

kx1k
1−x
2 =

1

xx(1 − x)1−x
[Nb]x[C]x[Nb]1−x[N]1−x

=
1

xx(1 − x)1−x
[Nb][C]x[N]1−x (2.2.4)

Comparing the solubility product (2.2.2) for the reaction (2.2.1) with (2.2.4) it is seen
to be equal to

k = kx1k
1−x
2 xx(1 − x)1−x (2.2.5)

or, if you prefer, by taking logarithms of both sides,

log k = x log k1 + (1 − x) log k2 + x log x+ (1 − x) log(1 − x) (2.2.6)

This has the very pleasing structure of the weighted sum of the two solubility products
for reactions (2.2.2) plus an ideal entropy of mixing term. From this sublime height it
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all becomes a bit horrible, but I can develop formulas for the amount of dissolved Nb
at a given temperature and composition in the same way as we have done up to now,
using the conservation of mass and the stoichiometry (see page 6),

NbT = [Nb] + NbNbCN (2.2.7a)

NbNbC = xNbNbCN (2.2.7b)

NbNbN = (1 − x)NbNbCN (2.2.7c)

CT = [C] + CNbCN (2.2.7d)

NT = [N] + NNbCN (2.2.7e)

CNbC =
12

93
NbNbC (2.2.7f)

NNbN =
14

93
NbNbN (2.2.7g)

CNbCN =
12

93
xNbNbCN (2.2.7h)

NNbCN =
14

93
(1 − x) NbNbCN (2.2.7i)

Again, I have used NbCN as a short hand for NbCxN1−x and the atomic weights (relative
atomic masses) of C, N and Nb are 12, 14 and 93.

There are two possible approaches, which I describe in the next two sections, 2.2.1.1
and 2.2.1.2.

2.2.1.1 The quartic equation

I can rewrite equations (2.2.3e) and (2.2.3f) like this, using the mass balance equations
above,

xk1 = [Nb][C] = [Nb]
(

CT − 12

93
x (NbT − [Nb])

)
(2.2.8a)

(1 − x)k2 = [Nb][N] = [Nb]
(

NT − 14

93
(1 − x) (NbT − [Nb])

)
(2.2.8b)

Then these are expanded out and like terms in x are collected; after which the first is
divided by the second which eliminates x. The result is

0 = − (12 × 14) [Nb]4

+ (12 × 14 × 2NbT − 12 × 93 × NT − 14 × 93 × CT ) [Nb]3

+
(
12 × 93 (k2 + NTNbT ) − 12 × 14 × Nb2

T + 14 × 93 (k1 + CTNbT )
)

[Nb]2

+
(
932 (NTk1 + CTk2) − 93 × 14 × NbTk1 − 93 × 12 × NbTk2

)
[Nb]

− 932 × k1k2 (2.2.9)

This is a quartic equation for the dissolved niobium weight percent. Note that these
equations, while still horrible, would look a lot less cluttered if we used atomic rather
than weight percent so that the numbers would all go away. (I printed the numbers
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deliberately small on pages 14–16 so as not to obscure the structure any more than
necessary.)

Once [Nb] is known then the amount of Nb tied up as carbonitride is

NbNbCN = NbT − [Nb]

Then the stoichiometry of the carbonitride is found as follows. Combining (2.2.7d)
and (2.2.3e) with the stoichiometric formula (2.2.7h) we find

x = CT

(
k1

[Nb]
+

12

93
NbNbCN

)−1

= CT

(
k1

[Nb]
+

12

93
(NbT − [Nb])

)−1

(2.2.10)

Once we have the amount of dissolved Nb from solving (2.2.9) and the stoichiometry of
the carbonitride (2.2.10) then we can find the amount of Nb, C and N in solution and
tied up as carbonitride from (2.2.7a), (2.2.7d–e) and (2.2.7h–i).

2.2.1.2 The quadratic equation

The solubility products, k1 and k2, depend on x and we don’t know how to get them
from experiment. However we do know the solubility products for the binary NbC and
NbN precipitates, from separate measurements of Fe-Nb-C and Fe-Nb-N alloys,

NbC(ppt) = Nb(sol) + C(sol) ; kC = [Nb]C[C]C (2.2.11a)

NbN(ppt) = Nb(sol) + N(sol) ; kN = [Nb]N[N]N (2.2.11b)

By comparison of (2.2.3e) and (2.2.3f) with (2.2.11), we are tempted to write

kC = xk1 (2.2.12a)

kN = (1 − x)k2 (2.2.12b)

However this is not correct, as I’ve indicated with subscripts “C” and “N” in (2.2.11): the
amounts of carbon and nitrogen in solution, [C] and [N], in equilibrium with NbCxN1−x

in a Fe-Nb-C-N alloy are not the same as the amount of carbon [C]C in equilibrium with
NbC in a Fe-Nb-C alloy and the amount of nitrogen [N]N in equilibrium with NbN in a
Fe-Nb-N alloy.

But if I admit the assertion (2.2.12) then I can replace the left hand sides of (2.2.8) with
kC and kN. I then eliminate x between these two equations and obtain

1

93
[Nb]2 +

(
1

14
NT +

1

12
CT − 1

93
NbT

)
[Nb] − 1

12
kC − 1

14
kN = 0 (2.2.13)

This is a quadratic equation that can be solved to find the amount of dissolved Nb.

Once we have that then we can find the amount of Nb tied up as precipitate, us-
ing (2.2.7a),

NbNbCN = NbT − [Nb]
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We’ve assumed, or approximated, that equation (2.2.11a) is the same as

kC = [Nb][C]

that is,

[Nb] = [Nb]C = [Nb]N (2.2.14a)

[C] = [C]C = [C]N (2.2.14b)

[N] = [N]C = [N]N (2.2.14c)

(cf. (2.2.2) and (2.2.11).) By stoichiometry (2.2.7h),

CNbCN =
12

93
xNbNbCN

Equation (2.2.7d) leads to

[C] = CT − CNbCN = CT − 12

93
xNbNbCN =

kC
[Nb]

and solving for x we find

x =
1

12
93

NbNbCN

(
CT − kC

[Nb]

)
=
(

12

93
(NbT − [Nb])

)−1
(

CT − kC
[Nb]

)
Finally using (2.2.7d–e) we can find the amounts of dissolved carbon and nitrogen, and
we have the complete picture then.

2.2.1.3 Comparison of the two approaches

The principal difference between these two approaches is evident when you note
that (2.2.13) is the equivalent of (2.1.3) in the mutually exclusive case. This means
that in the quadratic approach we are ignoring the miscibility between NbC and NbN.
This amounts to our assumptions (2.2.14); that is that the amounts of dissolved ele-
ments in equilibrium with NbC in the absence of N, and with NbN in the absence of
C are the same as in the equilibrium (2.2.1). A good way to get a feel for the effect of
the miscibility and the precipitation of carbonitride is to look from the point of view of
equations (1.1.4) and (2.2.6). In view of (1.1.4), the logarithm of the solubility product
is proportional to minus the standard free enthalpy of solution at some fixed tempera-
ture. As (2.2.6) shows the logarithm of the solubility product, k1, for the solution of the
carbonitride is the weighted average of the logarithms of the solubility products for the
separate solutions of the carbide and the nitride, k1 and k2, plus an entropy of mixing
term which is negative. So k is smaller than the weighted average from the individual
reactions, meaning that the standard free enthalpy of solution is increased by allowing
the carbide and nitride to mix. Hence the carbonitride is, loosely speaking, more stable
than the carbide and nitride and hence less soluble. This means that the effect of ni-
trogen addition to a carbon microalloyed steel, enabling the formation of carbonitride,
is roughly speaking to reduce the solubility of the resulting carbidonitride (compared to
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the carbide and nitride) and hence to promote precipitation, or equivalently to raise the
temperature at which all the Nb is dissolved.

The quartic approach was taken by Hudd et al., J. Iron and Steel Institute, 209, 121
(1971). However because k1 and k2 are not known as functions of x, Hudd et al. assumed
that

k1 = kC (2.2.15a)

k2 = kN (2.2.15b)

That is, for k1 and k2 they used published solubility product data from Fe-Nb-C and
Fe-Nb-N alloys. This is arguably an even more drastic approximation than (2.2.11) and
(2.2.12) used in the quadratic approach, namely,

k1 = kC/x (2.2.16a)

k2 = kN/(1 − x) (2.2.16b)

because at least here the solubility products implicitly depend on x as they should.
We could argue that in principle the quartic approach is the more rigorous, but the
approximation that needs to be made to solve it is more drastic than the approximation
of exclusive carbide and nitride, albeit combined into a single stoichiometry carbonitride
precipitate. But we see now that this is incorrect.

Figure 19 illustrates the comparison using as examples Fe-0.03Nb-0.1C-0.01N and Fe-
0.08Nb-0.1C-0.01N steels. The red and blue circles correspond to solutions of equa-
tion (1.1.10) for the cases that either nitrogen or carbon are absent, and show the
weight precent of Nb expected to be tied up in precipitate as functions of the austenitis-
ing temperature. For the quaternary alloys we show solutions obtained from the quartic
(as solid lines) and quadratic (as dotted lines) connecting the green circles.

The quadratic approach, which amounts to the mutually exclusive case, practically
predicts the same amount of precipitate as for the case of the Fe-Nb-C alloy. This is
because (2.2.13) essentially reduces to (1.1.10) because kN is an order of magnitude
smaller than kC (figure 5) and NT is an order of magnitude smaller than CT .

On the other hand, the quartic approach properly takes account of the enthopy of
mixing. As argued above this has the effect of increasing the thermodynamic stability
of the NbCxN1−x and so it’s solubility is less and a greater amount of precipitate is
predicted compared to the mutually exclusive (quadratic) approximation. There still
remains the fact the ansatz (2.2.15) cannot be right. The qualitative features of the
theory are evident in figure 19, but this does not mean that the quantitative predictions
are correct. It may be possible to calculate k1 and k2 from electronic structure theory.
It may also be possible to do experiments as suggested by equations (2.2.3e) and (2.2.3f)
in which as a function temperature, using different compositions of Fe-Nb-C-N alloys,
both the equilibrium concentrations of dissolved N and C and the stoichiometry, x, of
the NbCxN1−x can be measured.
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Figure 19: Weight percent of Nb in precipitate as a function of
soaking temperature. These are solutions of equations (1.1.10) (red
and blue circles corresponding to the ternary Fe-Nb-C and Fe-Nb-
N alloys), (2.2.9) and (2.2.13) which are respectively the quartic
and quadratic approaches described in the text. The solubility
parameters used are shown in the figure.

It is significant that the results shown in figure 19 are quite insensitive to the choice of
parameterisation (1.1.4) for the solubility products. The top two graphs are calculated
using a parameterisation

log kC = 3.42 − 7900/T ; log kN = 2.80 − 8500/T

which is cited by Gladman as due to measurements of Narita; and the lower two used

log kC = 2.96 − 7510/T ; log kN = 4.04 − 10230/T
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which are the parameters quoted by Hudd et al. Since the assumption (2.2.15) is that
k1 = kC and k2 = kN and since we expect that k1 < kC and k2 < kN as argued above,
then the solubility of NbCxN1−x is overestimated and we expect that actual amounts of
precipitate to be even larger than predicted.

2.2.2 Complex carbonitrides

Imagine a steel with composition A wt%Ti, B wt%Nb, C wt%C and D wt%N. In
comparison to equations (2.2.3a,b) we have these equilibria,

TiC(in TiNbCN) = Ti(sol) + C(sol) ; k1 = [Ti][C]/aTiC (2.2.17a)

NbC(in TiNbCN) = Nb(sol) + C(sol) ; k2 = [Nb][C]/aNbC (2.2.17b)

TiN(in TiNbCN) = Ti(sol) + N(sol) ; k3 = [Ti][N]/aTiN (2.2.17c)

NbN(in TiNbCN) = Nb(sol) + N(sol) ; k4 = [Nb][N]/aNbN (2.2.17d)

in which a is the activity of the precipitate. Again, we may not take these as being one.
Consider the dissolution of a complex carbide of Ti and Nb, and a complex nitride of
Ti and Nb,

TixNb1−xC(ppt) = xTi(sol) + (1 − x)Nb(sol) + C(sol) (2.2.18a)

TiyNb1−yN(ppt) = yTi(sol) + (1 − y)Nb(sol) + N(sol) (2.2.18b)

As in the case of the simple carbonitride we envisage the formation of the complex
carbonitride in two stages: first the formation of the carbide and the nitride (2.2.18),
followed by their mixing to form the carbonitride. The formation of the complex car-
bonitride is described by the equilibrium,

Tixz+y(1−z)Nb(1−x)z+(1−y)(1−z)CzN1−z(ppt) =

zxTi(sol) + z(1 − x)Nb(sol) + zC(sol)+(1 − z)yTi(sol)+

(1 − z)(1 − y)Nb(sol) + (1 − z)N(sol)

in which we essentially mix z moles of (2.2.18a) with (1 − z) moles of (2.2.18b).

As in section 2.2.1 we assume that the complex carbonitride is an ideal solid solution of
the component complex carbides and nitrides then we can assert that

aTiC = xz (2.2.19a)

aNbC = z(1 − x) (2.2.19b)

aTiN = y(1 − z) (2.2.19c)

aNbN = (1 − y)(1 − z) (2.2.19d)

We proceed in the same vein as before exploiting the mass balance identities, stoichiome-
tries and the irritating atomic weight ratios. The weight percentage of N in the austenite
matrix is [N] and so the weight percent nitrogen in the carbonitride is D− [N], and the
weight percent carbon in the carbonitride is (12/14)(D − [N])z/(1 − z). The weight
percent of Ti in the carbonitride is the sum of that weight percent that came from the
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formation of TiC in the first step of the thought experiment plus that coming from the
TiN,

wt%Ti in carbonitride = Ticarbonitride =
48

14
(D − [N])

xz + y(1 − z)

1 − z

in the same way

wt%Nb in carbonitride = Nbcarbonitride =
93

14
(D − [N])

(1 − x)z + (1 − y)(1 − z)

1 − z

Now we can find the matrix compositions of C, Ti and Nb in terms of [N] and the alloy
composition and stoichiometry of the carbonitride (remember that the steel composition
is A wt%Ti, B wt%Nb, C wt%C and D wt%N, so in our notation, A = TiT , B = NbT ,
C = CT and D = NT ),

[C] = C − 12

14
(D − [N])

z

1 − z

[Ti] = A− 48

14
(D − [N])

xz + y(1 − z)

1 − z

[Nb] = B − 93

14
(D − [N])

(1 − x)z + (1 − y)(1 − z)

1 − z

Putting these into the second column of equations (2.2.17) for the solubility products
we get, bearing in mind (2.2.19),

k1 = [Ti][C]/aTiC

=
1

xz

(
A− 48

14
(D − [N])

xz + y(1 − z)

1 − z

)(
C − 12

14
(D − [N])

z

1 − z

)
(2.2.20a)

k2 = [Nb][C]/aNbC

=
1

z(1 − x)

(
B − 93

14
(D − [N])

z(1 − x) + (1 − y)(1 − z)

1 − z

)
×(

C − 12

14
(D − [N])

z

1 − z

)
(2.2.20b)

k3 = [Ti][N]/aTiN

=
1

y(1 − z)

(
A− 48

14
(D − [N])

xz + y(1 − z)

1 − z

)
[N] (2.2.20c)

k4 = [Nb][N]/aNbN

=
1

(1 − y)(1 − z)

(
B − 93

14
(D − [N])

z(1 − x) + (1 − y)(1 − z)

1 − z

)
[N](2.2.20d)

If y is made the subject of (2.2.20c) and this then substituted into (2.2.20a, b and d)
then, after making x the subject of these, three further equations result,

x =
f1([N], z)

f2([N], z)
(2.2.21a)

x =
f3([N], z)

f4([N], z)
(2.2.21b)

x =
f5([N], z)

f6([N], z)
(2.2.21c)
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in which the six functions as defined in (2.2.21) are

f1 = A(1 − z)k3

(
C(1 − z) − 12

14
z (D − [N])

)
f2 = z

(
(1 − z)k1

(
(1 − z)k3 +

48

14
[N] (D − [N])

)
+

48

14
(D − [N]) k3

(
C(1 − z) − z

12

14
(D − [N])

))
f3 =

{(
(1 − z)k3 +

48

14
[N] (D − [N])

)(
93

14
(D − [N]) −B(1 − z)

)
−A[N](1 − z)

93

14
(D − [N])

}(
c(1 − z) − 12

14
z (D − [N])

)
+ z(1 − z)2 k2

(
(1 − z)k3 +

93

14
[N] (D − [N])

)
f4 = z(1 − z)

{
(1 − z)k2

(
(1 − z)k3 +

48

14
[N] (D − [N])

)
+

93

14
(D − [N])

(
C(1 − z) − z

12

14
(D − [N])

)}
f5 = B(1 − z)[N]

{
(1 − z)k3 +

48

14
[N] (D − [N])

}
−
{

(1 − z)k4 +
93

14
[N] (D − [N])

}{
(1 − z)2 k3 +

48

14
[N] (D − [N]) − A(1 − z)[N]

}
+ z(1 − z)[N] (D − [N])

(
48

14
k4 −

93

14
k3

)
f6 = z(1 − z)[N] (D − [N])

(
48

14
k4 −

93

14
k3

)
We seek values of [N], the dissolved nitrogen concentration, and z, the fraction of the
interstitial sites that are occupied by carbon (as opposed to nitrogen—there are no
vacancies in this problem) such that equations (2.2.21) are consistent; that is, such
that each of those three ratios, f1/f2, f3/f4 and f5/f6, is equal to a number, x, which
must of course be between zero and one (since it is the fraction of transition metal sites
occupied by Ti, as opposed to Nb). Equating the three equations (2.2.21) results in just
two independent equations,

f1
f2

=
f3
f4

f1
f2

=
f5
f6

equivalently
f1 f4 = f2 f3

f1 f6 = f2 f5

Two further functions of [N] and z are defined, namely,

F1 = f1 f4 − f2 f3

F2 = f1 f6 − f2 f5

and it follows that when both of these are zero a solution is found as long as it results
in sensible values of [N] and z, namely that 0 < [N] < D and 0 < z < 1.
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This provides the basis of a computed solution of the problem of determining the amount
and the stoichiometry of the complex carbonitride in the steel of a given compostion
and temperature.

The procedure is illustrated in figure 20. The computer selects systematically trial
values of z (between zero and one) from which [N] is found by iteration. For each pair
(z, [N]) the functions f1 to f6 are evaluated and hence functions F1 and F2. In figure 20,
the solid line shows the concentration of free nitrogen, [N], as a function of z for which
F1 = 0, and the broken line shows the same for which F2 = 0. For those values of [N]
and z for which both F1 and F2 are zero, namely at the interesection of the two lines, we
have a solution of the problem at the chosen composition and temperature. Of course
it assumed that data are available for the solubility products, k1 to k4, for the ternary
equilibria (2.2.17).

Figure 21 shows a full solution of the problem for a 0.1C-0.009N-0.01Ti-0.03Nb steel
(that is A = 0.01, B = 0.03, C = 0.1, D = 0.009). The calculated weight percent-
ages of the components in solution and in carbonitride are shown as a function of the
temperature. CN is shorthand for carbonitride.

Figure 20: Schematic illustration of the solution to equations
(2.2.21)
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Figure 21: Calculated concentrations Ti, Nb, C, N in solution in
austenite and as carbonitride precipitates in a 0.1C-0.009N-0.01Ti-
0.03Nb steel

Further reading

T. Gladman, “The Physical Metallurgy of Microalloyed Steels,” Published by Maney,
for the Institute of Materials, 1997


