
PHY3011 Quantum Mechanics—Assignment 1

Please do this assignment and hand in the answers to the Departmental Office

by 4pm Monday 16th November.

WAVEPACKETS

Free electrons, ie, those moving in a constant potential, are infinitely extended so it’s
hard to treat them as particles. We could second-quantise them, but a cheap and cheerful
scheme is to make them into wavepackets. That’s what this problem is about. You will
need a computer graph plotting program, and the help of a textbook (it’s all in Cassells).
Please don’t use the internet; I don’t want any downloaded grafix.

In this problem just consider a free electron plane wave, moving in one dimension, in the
x-direction,

ψk = ei(kx−ωt). (1)

This wave has wavelength 2π/k, energy

ε= h̄ω(k) =
h̄2k2

2m

and angular frequency ω. It is a solution of the time dependent Schrödinger equation

−

h̄2

2m
∂2ψ

∂x2
= ih̄

∂ψ
∂t

(2)

where t is time. Actually equation (1) is just one particular solution of the wave equa-
tion (2), in fact any wavevector is allowed for a free electron so a more general solution is
a linear combination of waves of different k:

ψ =
∑

k

C(k) ei(kx−ωt)

where C(k) are any coefficients. It’s handy to write this instead as an integral,

ψ =
∫

∞

−∞

A(k) ei(kx−ωt) dk (3)

where A can be any function within reason. But if we want to localise the plane waves
to make the electron particle-like we want to choose a function that is large only in the
neighbourhood of some chosen wavevector k0. A good choice is a Gaussian,

A(k) = c e−a2(k−k0)
2

, c =
a
√

π
(4)

where a and c are constants, a determines the width of the Gaussian and c is a normalising
constant; of course really there’s only one constant because they are related by the factor
√

π. You may want to check at this point that you remember what a Gaussian looks
like—it’s a “bell curve.”
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From now on, work in Rydberg atomic units in which h̄ = 1, 2m= 1 and the energy is in
Rydbergs (1 Ry = 13.6 eV). Then we have

ε = ω = k2.

If we put (4) into (3) we get our wavepacket

ψ =
a
√

π

∫

∞

−∞

e−a2(k−k0)
2+i(kx−k2t) dk (5a)

=
a
√

π

∫

∞

−∞

e−αξ2
−2βξ−γ dξ (5b)

where

ξ = k − k0

and

α = a2 + it β =
1

2
i (−x+ 2k0t) γ = ik0 (−x+ k0t) . (5c)

The integral (5b) can be done like this.

∫

∞

−∞

e−αξ2
−2βξ−γ dξ = e(β2/α)−γ

∫

∞

−∞

e−α(ξ+β/α)2 dξ

= e(β2/α)−γ
∫

∞

−∞

e−αu2

du

=

√

π
α

e(β2/α)−γ .

So substituting back for α, β and γ from (5c) we get

ψ(x, t) =
a

√

a2 + it
exp

(

−

(x− 2k0t)
2

4(a2 + it)
+ ik0(x− k0t)

)

. (6)

This is the wavefunction for your wavepacket centred at wavevector k0 as a function of
position x and time t. The probability density is

∣

∣ψ(x, t)
∣

∣

2
=

a2
√

a4 + t2
exp

(

−

a2(x− 2k0t)
2

2(a4 + t2)

)

. (7)

The argument to the exponential is clearly negative, so the maximum value of the prob-
ability at any time t is when the argument is largest (ie, zero) which is when

x= 2k0t

so the velocity of the wavepacket must be 2k0 in Rydberg units, or in any units

vg =
h̄k0
m

. (8)

This is the group velocity.

2



Here are now your problems.

1. Consider the single plane wave (1). Explain why it cannot be normalised. What is the
phase velocity of this wave? Compare this with the group velocity (8) of the wavepacket
centred on the same wavevector. You may like to make a comment on this.

2. Using equation (6) find ψ(x,0) and
∣

∣ψ(x,0)
∣

∣

2
. Normalise these. Plot these functions

and comment on exactly what they are. For complex functions, plot the real and
imaginary parts separately.

3. Is ψ(x,0) a stationary state? That is, is it a solution of the time independent
Schrödinger equation?

4. What can you say about the momentum of the particle you have created? What are the
uncertainties in the momentum and position and do they agree with the uncertainty
principle? Do all this at t= 0. What is the role of the constant a in all of this?

5. Make some plots of equations (6) and (7) at a few times, for example t = 0, t = t0,
t = 2t0, t = 4t0 to find out how the shape and position of the wavepacket evolves over
time. Don’t bother about the complex amplitude, just plot the exponential parts of
the function.

6. Using some sensible values of the parameters, find out roughly how long the wavepacket
survives as a localised object. How far does it travel in that time?

3


