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Fully quantum mechanical calculation of the diffusivity of hydrogen in iron using the tight-binding
approximation and path integral theory
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We present calculations of free energy barriers and diffusivities as functions of temperature for the diffusion
of hydrogen in «-Fe. This is a fully quantum mechanical approach since the total energy landscape is computed
using a self-consistent, transferable tight binding model for interstitial impurities in magnetic iron. Also the
hydrogen nucleus is treated quantum mechanically and we compare here two approaches in the literature both
based in the Feynman path integral formulation of statistical mechanics. We find that the quantum transition state
theory which admits greater freedom for the proton to explore phase space gives result in better agreement with
experiment than the alternative which is based on fixed centroid calculations of the free energy barrier. This will
have an impact on future modeling and the simulation of hydrogen trapping and diffusion.
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I. INTRODUCTION

The damaging effect of hydrogen (H) on the mechanical
properties of metals and alloys has been studied extensively
since the 1940s. However, there is still considerable debate
regarding the specific mechanisms for H-assisted damage, that
is, the role of H in the fracture process. Various doubts exist
regarding the validity of each of the existing H-assisted embrit-
tlement mechanisms."? It is widely accepted that combinations
of several mechanisms can occur simultaneously and syner-
gistically, since some involve common background processes.
A common factor in all H-assisted damage mechanisms is
the crucial role of H transport and trapping. In all cases, the
predominant H-assisted damage mechanisms are dependent
on the rate and mode of H transport.

In particular, H diffusion in Fe and Fe alloys is extremely
important because it leads to engineering problems caused
by H embrittlement and degradation of high-strength steels.
Hydrogen in a-Fe diffuses between tetrahedral sites of the
perfect bee lattice, the diffusivity being among the highest
reported for any metal.> This high H diffusivity results from
the very low activation energies due to the quantum nature of
H.? The existence of microstructural imperfections (vacancies,
solute atoms, dislocations, grain boundaries, etc.) introduces
low energy trapping sites within the lattice which retard
the overall diffusion rate.”® Because H is a light element,
intrinsic processes in H diffusion are strongly influenced by its
quantum mechanical behavior. At low temperatures quantum
tunneling is expected to be the dominant mechanism. At
high temperatures, the transition is dominated by classical
jumping over the barrier. In order to understand the process
of H diffusion in Fe, it is essential to study H trapping and
migration over the whole range of temperatures covering both
the quantum and classical dominated regimes and the crossover
between them.

The structure of the paper is as follows. In Sec. II we
introduce the classical methodologies which we modify in
Sec. III for the quantum nature of the diffusing particle. We
show the results of our calculations in Sec. IV in which
we have combined the quantum transition state theory'°
(QTST) with the Wang Landau Monte Carlo method for the
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calculation of free energies.!! This has the particular benefit
that from a single Monte-Carlo simulation the free energy
may be extracted at any temperature, in contrast to the usual
Metropolis Monte-Carlo.'? Our results are demonstrated to
be in excellent agreement with experiment, and since our
combined QTST-WLMC scheme is very computationally
efficient, this opens the way to large scale simulations of
trapping by defects in steel. We make some concluding
remarks in Sec. V.

II. MOLECULAR DYNAMICS AND TRANSITION
STATE THEORY

One of the most commonly adopted approximations in
atomistic simulations of a system’s evolution is the assumption
that atomic nuclei behave as classical particles. Theoretical
approaches based on molecular dynamics (MD) have been
used to study H trapping and migration in Fe.'*!* An estimate
of hydrogen diffusivity can also be provided by employing
the kinetic Monte Carlo (kMC) method.!>'® The fundamental
transition rate constants used by kMC can be estimated
without knowledge of the dynamics of the system within the
framework of the classical transition state theory (TST).'®!
Unfortunately, when simulations of H diffusion are made at or
below room temperature, significant deviations from classical
behavior are to be expected due to the quantum nature of
the proton motion. An explicit treatment of quantum effects
is not only desirable for an improvement of the accuracy
of the simulations, but it can be essential for understanding
phenomena and experimental observations depending directly
on the quantum nature of the nuclear motion.

The state of the art for quantum treatment of the ionic
degrees of freedom involves the use of the centroid path
integral molecular dynamics (CMD) method.'® This was used
recently to evaluate the differences between the free energies
of H at the interstitial and binding sites in a-Fe.'*?° However,
including quantum effects is computationally demanding
compared to a simulation with classical nuclei, since one has to
compute the energy of many replicas of the physical system.
Studying H migration and calculations of the diffusivity in

©2013 American Physical Society


http://dx.doi.org/10.1103/PhysRevB.88.054107

IVAYLO H. KATZAROV, DIMITAR L. PASHOV, AND ANTHONY T. PAXTON

the presence of microstructural imperfections also require
simulations in large blocks of atoms for times exceeding the
typical CMD time scales.

The kMC method has the advantage of being computation-
ally less expensive because the interatomic interactions are not
computed directly from the electronic structure on the fly as
the simulation proceeds. Instead, kMC uses precomputed tran-
sition rates along the minimum energy paths (MEPs) between
the metastable sites, thereby allowing employment of more
precise electronic structure methods, density functional theory
(DFT), tight binding (TB), or bond order potentials for compu-
tation of the energy of the physical system and derivation of the
transition rates. The application of KMC for the study of H dif-
fusion permits simulations in larger blocks of atoms for periods
of time significantly longer than one can achieve with direct
MD simulation, which is essential for studying H migration
and trapping in the presence of microstructural imperfections
and consequent extraction of the diffusion coefficients.

Classical TST assumes that the H transition rates between
metastable sites follow approximately the Arrhenius law and
the activation energy is the difference of the energy for
a fully relaxed system at the saddle point separating the
stable sites and the stable site itself.'!” Modern ab initio
modeling provides a good description of the energetics and
potential energy surface (PES) in Fe-H systems. However,
these calculations of energy barriers can not account for
quantum corrections arising from the low mass H atom.
Although the overall energy barriers are small, as expected for
a small atom like H and the geometry of the bcc lattice, they
are significantly higher than the experimentally determined
activation energies.'® A quantum treatment of the hydrogen
degrees of freedom is mandatory to capture such effects.

III. FEYNMAN PATH INTEGRALS AND QUANTUM
TRANSITION STATE THEORY

Gillan?"?? has argued that the appropriate quantum gener-
alization of the activated rate constant can be obtained using
the Feynman path integral (PI) method.?? This generalization
involves the ratio of probabilities for finding the centroid of
the quantum chain at the saddle point and at the stable site.
The activation energy is the difference of the free energy for
a fully relaxed system with the the centroid at the saddle
point separating the stable sites, and at the stable site itself.
Gillan has also proposed a technique for the calculation
of this ratio in path integral simulation. Although Gillan’s
approach allows one to examine the relative transition rates
at different temperatures it does not yield an absolute value
for the activated rate constant, A general TST-like theory
for the calculation of the quantum activated rate constant
providing expressions for both the quantum activation free
energy and the prefactor was proposed by Voth.!%24-2 Voth’s
QTST presents the general quantum transition rate problem
from the perspective of path integral centroid statistics.”?

In this paper, we study the activated dynamics of hydrogen
diffusion between tetrahedral sites in «-iron by employing
Voth’s path integral formulation of quantum transition state
theory for the calculation of the corresponding activation rate
constants. Apart from allowing simulations in larger blocks
of atoms for periods of time significantly longer than can be
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achieved with CMD simulation, the advantage of employing
kMC with a transition rate determined by PI QTST for studying
H diffusion is that one can use an accurate electronic structure
approach for computation of the energy of the physical system
and derivation of the quantum transition rates.

A. Interatomic forces and total energy

Recent work studying diffusion of interstitial H in «-Fe
by applying the CMD approach!®?° employed an interatomic
potential for describing the electronic structure of the Fe-H sys-
tem within the embedded atom method (EAM) formalism.?’
Although there is a large number of existing classical
potentials,>’~2° which are certainly useful, they all suffer from a
particular drawback in that the underlying classical EAM-type
models require a huge number of parameters needing to be
fitted to a very large training set of data. This and the rather
opaque functional form of the interatomic interactions in the
classical potentials mean that while they are able to model
many properties quantitatively they are at risk of failure once
they are transferred into situations for which they were not
fitted. A well known example of this is the failure of all but one
of the many classical potentials for «-Fe to simulate correctly
the core structure of the screw dislocation; TB models do not
suffer from this problem.

The electronic structure and interatomic forces in mag-
netic iron, both pure and containing hydrogen impurities,
in the present calculations, have been described using a
nonorthogonal self-consistent tight binding model.***! The
transferability of the model has been tested against known
properties in many cases. Agreement with both observations
and DFT calculations is remarkably good, opening up the
way to quantum mechanical atomistic simulation of the effects
of hydrogen in iron.?! By contrast with EAM potentials, the
TB model used in this paper comprises a correct quantum
mechanical description of both magnetism and the metallic
and covalent bond.

B. Theory

The approach to a quantum mechanical TST, proposed by
Voth, is based on Feynman’s formulation of quantum statistical
mechanics,?? in which the partition function Z of a particle
moving in one dimension having Hamiltonian

2
H=L 4v
2m
and in equilibrium with a heat bath at inverse temperature
B = 1/kpT is written approximately using a discretization of

the imaginary time Feynman path integral as*

mP 7
X 7Zp= — /dx1~-~dxp
27 Bh

" Tt mP
X exp {—ﬁ > [5;2—/32(@ —x) + P‘IV(m” :
s=1

ey

This expresses the remarkable mapping of the partition
function of a quantum mechanical particle onto that of a
necklace of P beads connected by classical harmonic springs
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of stiffness m P /%82, each bead feeling in addition a potential
energy V(r)/P, for large P much weaker than the true
potential energy. Note also that the potential energy of the
springs in the classical analog derives from the kinetic energy
operator in the Hamiltonian. The numerical estimate converges
to the quantum limit when the discretization parameter P is
chosen to be large enough. For our purposes we find P = 20
to be sufficient. In the P — oo limit, as Feynman shows, the
partition function is written as a path integral

Z= /Dx(t)e_s/h,

which is an integral over all closed paths x(7) in configuration
space. The action integral is

hp
S[x(t)]:/ dr [%mxz(t)—i-V(x(r))]
0

The key to obtaining the rate constant in QTST is to
separate out paths in the multidimensional coordinate space
into a “reaction coordinate” denoted by ¢ (7) and the remaining
coordinates by r(7).!° g(r) might be a path connecting two
stable configurations through a saddle point, or it may be a
path constrained to the dividing surface separating two stable
configurations.*® One can then work with a reduced centroid
density

pe(gerre) = f Dg(t)Dr(z)8(ge — qo)3(re — 1)
x exp{—S[g(x).F(t)]/A).

where § is the Dirac delta function, in terms of which a
constrained partition function is

Z.(q") = / dr. p(g*.ro). %)

where g™ is the transition state value of the reaction coordinate.
The “centroid” variable g in path integration is defined along
the g direction by the expression

1 ("
90 = ﬁ/g dtq(v).

The transition rate constant x can then be expressed in terms
of Z.(g*) as

KQTST _ E ZL(CI*)

2 Zp
where Zg is the unconstrained “reactant” partition function
for the particle localized about a lattice or trap site, and v is
a velocity factor'” which can be estimated by adopting a free

particle dynamical model along the ¢ direction and taking the
velocity from a Maxwell distribution. In this way, ¥ becomes

) 2 \:
UFP_<_7tm,3> ,

and the quantum transition state rate constant is
1
L QTST _ 1 \2ZJ(q") _ 3)
2Tm ,3 VA R

This expression is difficult to implement in practice because
in any numerical calculation via either molecular dynamics
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or Monte Carlo that generates a canonical distribution we
do not have direct access to the partition function. It can be
computed by generating a canonical distribution if it can be
expressed in terms of averages of phase space functions. The
QTST proton transfer rate constant may be reexpressed as>°

kKT = yexp(—BAF,), 4)

where v is the frequency of oscillation of the proton in the ¢
direction, and the difference between centroid free energies
of the reactant and transition state is
Zc(q*))

ZC(QR) ’
where g is the reactant state value of the reaction coordinate g.
The free energy difference between the reactant and transition
state can be evaluated using one of the methods for determi-
nation of the free energy profile along the reaction coordinate.
An immediate disadvantage of the energy profile approaches
is that it is necessary to perform many simulations of a system
at physically uninteresting intermediate values. Only initial
and final configurations correspond to actual physical states,
and ultimately we can only attach physical meaning to the free
energy difference between these two states. Nevertheless, the
intermediate averages must be accurately calculated in order
for the integration to yield a correct result. The number of
physically uninteresting intermediate averages increases dra-
matically when one tries to derive the temperature dependence
of the quantum transition rate constant. In this case, the free en-
ergy difference between the reactant and transition state has to
be evaluated for each temperature under interest, because both
path integral MD** and conventional Monte Carlo methods
generate a canonical distribution at a given temperature.

AF, = —kgT 1n< %)

C. Free energy calculation

In this paper, we use the Wang Landau Monte Carlo
(WLMC) algorithm!! to calculate directly the partition func-
tions participating in the QTST activation factor. The key idea
of the WLMC method is to calculate the density of states
Q(E) directly by a random walk in energy space instead of
performing a canonical simulation at a fixed temperature. The
WLMC approach allows one to estimate various thermody-
namic properties over a wide range of temperatures from a
single simulation run. The canonical partition function can be
expressed in terms of the density of states Q2(E) as

Z(B) = / ” dE ¢ PE Q(E). (6)
0

The approach of Wang and Landau is to sample the density of
states directly and, once known, calculate the partition function
via (6).

The P-bead quantum partition function Zp(f8) is®

P \? S
zpw):(#hz) / drexp (— lér)—ﬁszm),

which reveals that the quantum partition function depends on
two temperature independent functions

P P

P
S =Y T —r) SE =Y (P V@)L

s=1 s=1
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FIG. 1. Potential energy surfaces, in eV, for a H atom moving in the fixed atomic positions of the Fe atoms; (a) configuration in which the
Fe atoms have been relaxed around a H atom in the tetrahedral reactant site; (b) the Fe atoms are relaxed around a H atom held at the saddle

point position between two neighboring tetrahedral sites.

S1(r), having units of energy~!, derives from the kinetic energy
of the quantum particle, and S,(r) = V(r)/P is the potential
energy felt by each bead. Hence the density of states, which is
an analogue of the classical density of states function, would
depend on two variables, s; and s,:%

Then we can express Z as

Z(8) = /wdsldsz exp (—% - ,Bs2> Q(s1,5).
0

With this density of states the partition function that describes
the thermodynamics of the quantum system can be calculated

$2(s1.52) = / drd(s; — 51(r)) 8(s2 — 5x(r)). D for any temperature. However, we can determine the density of
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FIG. 2. Densities of states 2(sy,s,) (7) for the proton moving in the potential of fixed Fe atoms as shown in Fig. 1: (a) centroid fixed at
tetrahedral site; (b) centroid in the vicinity of tetrahedral site; (c) centroid fixed at the saddle point; and (d) centroid on the dividing surface in
the region of the barrier top. (a) and (c) are those used in Gillan’s theory in which the centroids are fixed at reactant and saddle point positions.
(b) and (d) are appropriate to Voth’s method; in (b) the centroid is allowed to explore phase space in the region of the tetrahedral lattice site and
in (d) the centroid is confined to the Vineyard dividing surface that intersects the saddle point.
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states only up to a multiplicative constant, 2y, since this will
not change the relative measures at different energy levels. The
uncertainty in the density of states leads to a multiplicative
uncertainty in the quantum transition rate (3). The quantum
transition rate at a given temperature can be derived indepen-
dently from (4) by using a method for determination of the free
energy difference between the transition and reactant states. If
one knows x5 at a given temperature, the multiplicative
constant can be determined from (3) and (4) by a comparison
of the corresponding transition rates at the same temperature.
In the present paper we calculate the free energy difference
appearing in (4) by using an extension of the Wang-Landau
sampling scheme to the problem of the free energy profile
along reaction coordinates.® If the process of transition is
monitored by a switching variable g, the free energy profile is

F(q) = —kgT In P(q), ®)

where P(q) is the probability density that the system is in a

state with reaction coordinate g. Since Q2(E) and P(q) play

similar roles, the Wang-Landau sampling scheme can be used

to generate a function that approaches the probability P(q)

over many Monte Carlo passes with the following Metropolis
PN (g,re) 8¢

acceptance rule:
" pM(g.re) g(q“"'w)}’

where g is the Wang-Landau scaling parameter.® The multi-
plicative constant 2y can also be determined if the quantum

acc(ro

— r':,ew) = min|:1

PHYSICAL REVIEW B 88, 054107 (2013)

transition rate (3) at high temperature (the classical limit) is
approximated by a transition rate determined by the classical
TST.

IV. CALCULATION OF THE HYDROGEN
DIFFUSIVITY IN IRON

Here we study the real time quantum dynamics of hydrogen
diffusion in perfect «-iron by employing the path integral
(PI) approach described above combined with WLMC. The
electronic structure and interatomic forces in magnetic iron,
both pure and containing hydrogen impurities, in the present
calculations have been described using a nonorthogonal self-
consistent tight binding model.**3' It is to be noted that
the TB model predicts, correctly, that the configuration with
the lowest potential energy is the tetrahedral site. The MEP
and the transition state between two adjacent tetrahedral
sites have been identified by using the nudged elastic band
(NEB) method.?” In order to use the PI-WLMC technique
to calculate corresponding partition functions, we constructed
three-dimensional (3D) PESs for the hydrogen motion in two
fixed lattice configurations, corresponding to a fully relaxed
lattice of 16 Fe atoms with a H atom in tetrahedral and
saddle point configurations. We constructed PESs in these
fixed lattice configurations by performing a large set of TB
total energy calculations corresponding to different positions
of the hydrogen nucleus. In all these calculations the nuclei
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FIG. 3. Position probability density (PPD) of the hydrogen nucleus when the centroid is fixed at a tetrahedral site at a temperature of
@T=20K; )T =50K;(c)T =100K;(d) T =200K; (e) T =300K; and (f) T = 1000 K. In each panel the tetrahedral site is located
at the center of the image. Note that at high temperature the PPD is spherical and located close to the centroid as expected of a classical particle.
At intermediate lower temperatures the PPD spreads out, but at the lowest temperature the PPD contracts due to the freezing of the proton into
its lowest oscillator state; however it is no longer spherical as it “feels” the low symmetry of the tetrahedral site.
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FIG. 4. Position probability density of the hydrogen nucleus when the centroid is fixed at the saddle point at a temperature of (a) T = 20 K
®)T =50K;(c)T =100K;(d) T =200K; (e) T =300K;and (f) T = 1000 K. In each panel the saddle point is at the center of the image
and there is a symmetry equivalent tetrahedral site at the upper left and lower right corners. Note how at low temperature the proton splits into
two and even though the centroid of the chain of “beads” is held fixed at the saddle point the greatest position probability density is close to the

energy minima at the tetrahedral reactant sites.

are treated as classical point particles. The calculated potential
energy surfaces are shown in Fig. 1

Two principal differences between the methods of Gillan
and Voth are as follows. First, in the method of Gillan one
fixes the centroid at either the energy minimum or the saddle
point and thereby calculates a free energy barrier height.
Conversely in Voth’s approach we calculate a constrained
partition function (2) at the minimum and saddle point. In
particular at the saddle point we confine the particle to the
surface that intersects the saddle point and lies perpendicular to
the energy contours.*® Second, the method of Gillan furnishes
us only with an activation free energy (which we plotin Fig. 7).
This is not enough to find the diffusivity. On the other hand
Voth’s theory leads us to a rate constant and hence to the
diffusivity (which we plot in Fig. 9).

We have studied the importance of quantum effects in
hydrogen diffusion in perfect bcc Fe by employing both
Gillan’s approach for the calculation of the activation energy
and Voth’s formulation of the path integral QTST. Our main
result is the calculation of the density of states (7) at the stable
state and in the region of the barrier top of a Fe-H system in
the cases of Gillan’s formulation of the activation barrier and
Voth’s PI-QTST generalization of transition state theory. With
these densities of states (DOSs) the corresponding partition
functions, describing the thermodynamics of the quantum
system, can be calculated for any temperature. Knowing
corresponding partition functions, we can determine a number

of thermodynamic variables for the Fe-H system as functions
of the temperature. The DOSs of the stable and transition states
as they are defined in both Gillan’s approach and path integral
QTST are shown in Fig. 2.

We also determine the position probability density of the
hydrogen nucleus (proton) when it is in tetrahedral and saddle
point configurations. In Gillan’s path integral procedure H is
in stable or transition states when the centroid of the imaginary
time reaction coordinate path is in a stable interstitial impurity
site (Fig. 3) or a saddle point between two neighboring
interstitial sites (Fig. 4). Within Voth’s formulation of QTST,
we determine the position probability density of the hydrogen
nucleus when its centroid is confined in the potential well of
tetrahedral sites (Fig. 5) and on the dividing surface that inter-
sects the classical saddle point between two such sites (Fig. 6).
The probability distributions as functions of temperature, when
the centroid is at the transition state, are shown in Figs. 4 and 6.
It is very clear that in both cases at low temperature the proton
in the transition state “splits into two” with the greatest position
probability density not at the saddle point but very close to the
tetrahedral sites. At low temperatures the transition rate is
dominated by quantum tunneling through the barrier and both
Gillan’s and Voth’s approaches predict similar results. In the
classical limit (high temperature) the hydrogen atom can be
considered as a classical particle and its position probability
density is concentrated in the vicinity of the potential well
and classical saddle point. At high temperature, the reduced
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FIG. 5. Position probability density of the hydrogen nucleus when the centroid is in the vicinity of a tetrahedral site at a temperature
of (@) T=20K; (b)) T=50K;(c) T =100 K; (d) T =200 K; (¢) T =300 K; and (f) T = 1000 K. In each panel the tetrahedral site is
located at the center of the image. In comparison to Fig. 3 the particle is more spread out even at the highest temperature. This reflects the
greater degree of freedom of the PI-QTST theory compared to the method of Gillan.

centroid density Z.(¢*) and the reactant partition function
Zg of a Fe-H system in a stable tetrahedral site can be
approximated by the configurational partition functions of a
classical particle existing in quasiequilibrium. The assumption
that the motion of atoms in both configurations can be treated
as simple harmonic oscillators leads to the familiar Vineyard-
Slater expression,** derived from many body transition state
theory. Hence, the position probability density of the hydrogen
nucleus calculated in the framework of path integral QTST
(Figs. 5 and 6) includes corrections due to the motion (thermal
“vibration”) of the proton near the stable state and in the region
of the barrier top. As seen from the comparison between Figs. 3
and 5, as well as between Figs. 4 and 6, these corrections are
significant at room temperature and at high temperature.

In order to determine the activation barrier height given
by Gillan’s approach and the PI-QTST transition rate as a
function of temperature we have calculated the corresponding
partition functions appearing in both methods in the tem-
perature interval between 20 and 1000 K. Since the DOSs
are determined by a WLMC path integral approach up to
a multiplicative constant, we apply the extension of Wang-
Landau sampling to the problem of the free energy profile
to obtain the corresponding probability distribution functions
P(q) at a fixed temperature of 1000 K. We find that Gillan’s
free energy difference between stable and transition states is
AF =0.084 eV at 1000 K. As is to be expected this value
is very close to the classical limit of the migration barrier

(E,, = 0.088 eV) because quantum corrections are negligible
at high temperatures. After determination of the corresponding
multiplicative constant €2y, we can calculate the free energy
needed to carry the H atom from an initial stable position to
a transition state in the temperature interval between 20 and
1000 K. The activation energy, defined by Gillan’s quantum
generalization, as a function of temperature is shown in Fig. 7.

The free energy difference between transition and reaction
states at 1000 K, given in Voth’s theory by the ratio between
the corresponding reduced centroid densities (5), is calculated
by using WLMC to obtain the free energy profile (8). We
find that the free energy needed to carry a H atom from a
stable to a transition state at 1000 K is 0.087 eV. The proton
transition rate at 1000 K is determined from (4). The value of
the frequency of oscillation of the proton in the g direction, v =
1.29 x 10" s~!, appearing in (4) is derived from a harmonic fit
to the energy along the reaction coordinate determined by NEB
TB calculations. After the calculation of the multiplicative
constant 29 we can find the temperature dependence of the
quantum transition rate between two tetrahedral sites in a-Fe
in the interval between 20 and 1000 K (see Fig. 8). This is the
primary goal of the current paper.

In the simple case of H diffusion in a perfect bcc lattice, the
diffusion coefficient D can be determined from the Einstein
formula assuming an uncorrelated random walk in cubic
symmetry:

D = éZRzKQTST,
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FIG. 6. PPD of the hydrogen nucleus when the centroid is on the dividing surface in the region of the barrier top at a temperature of (a)
T=20K;(b)T =50K;(c)T =100K;(d) T =200K; (e) T = 300K; and (f) T = 1000 K. As remarked in the caption to Fig. 5 the PPD is
greatly spread out compared to that in the Gillan formulation of the path integral method. In addition, especially at high temperatures it is seen
that the reduced density is allowing the proton to explore the phase space along the Vineyard dividing surface, which is “perpendicular’ to the
reaction path. As the centroid is no longer constrained to remain at the saddle point the resulting free energy barrier is larger and the diffusivity

smaller in Voth’s method.
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FIG. 7. The free energy needed to carry the H atom from an
initial stable position to a transition state as a function of temperature,
obtained using Gillan’s approach. The activation energy is compared
with assessments from hydrogen equilibration and permeation tests
in Ref. 3.
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FIG. 8. Quantum transition rate calculated by PI QTST in the
temperature interval 20-1000 K.
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FIG. 9. Diffusion coefficients of H in «-Fe in the temperature
range 100-1000 K calculated by PIQTST. The bands of data represent
an assessment by Kiuchi and McLellan? of hydrogen gas equilibration
experiments and measurements by Grabke and Rieke,*® the vertical
width of the band reflecting the reported error bars. The remaining
lines are data from electrochemical permeation experiments, assessed
by Kiuchi and McLellan® and measured by Nagano et al.;% and
measurements using gas and electrochemical permeation by Hayashi
et al> The extent of each data set represents the temperature range
over which the assessment or measurements are reported. The
triangles show theoretical results from centroid molecular dynamics
calculations using a classical interatomic potential and are taken
from Ref. 19. Note that these are in less good agreement with
experiment at high temperature compared to our fully quantum
mechanical predictions and that at low temperatures the CMD method
predicts diffusivities significantly larger than ours. This may reflect
the difficulty in molecular dynamics canonical sampling at low
temperature in contrast to the WLMC method which accesses all
temperatures as a result of a single sampling.

where 7z =4 is the number of neighboring positions and
R =a/+/8 is the jump distance. An Arrhenius plot of the
diffusion coefficient as a function of temperature in the interval
from 20 to 1000 K is shown in Fig. 9. For comparison, experi-
mental diffusivities over a wide temperature range (240—1000
K)>>%3 and diffusion coefficients calculated by the centroid
molecular dynamics (CMD) method'® at several temperatures
between 100 and 1000 K are also plotted in Fig. 9. Our
results are in very reasonable agreement with the experimental

PHYSICAL REVIEW B 88, 054107 (2013)

measurements. A deviation from linear behavior is observed
in the Arrhenius plots based on our PI-QTST results. Also,
they are in good agreement with the diffusion coefficients
calculated by using the computationally demanding centroid
molecular dynamics technique'® in the interval 300-1000 K,
while at low temperatures these data show a much larger
diffusivity. It should be noted that in view of the logarithmic
axis in Fig. 9 our quantum mechanical tight binding predictions
are in better agreement even at high temperature with those
using an energy landscape based in a classical interatomic
potential. Our PI-QTST results are in excellent agreement with
the experimental measurements below 300 K.

V. CONCLUDING REMARKS

Our kMC path integral QTST approach in combination with
WLMC, along with the TB model describing energy of the Fe-
H system, permits a description of real time quantum dynamics
of hydrogen diffusion in «z-iron over a wide temperature range.
Unlike conventional MD and Monte Carlo methods generat-
ing canonical distributions, and computationally demanding
centroid MD techniques, the WLMC algorithm allows one
directly to calculate the partition functions participating in the
PI-QTST transition rates over a wide range of temperatures
from a single simulation run. The results reveal that quantum
effects play a crucial role in the process of H migration even at
room temperature. Although Gillan’s quantum generalization
of the activated rate constant describes correctly quantum
tunneling at low temperatures, the thermal “vibrations” of the
proton at the saddle point are not accounted for within this
approach, which leads to an underestimation of the activation
barrier height at room and high temperatures. The diffusion
coefficient as a function of temperature, calculated using the
QTST rate constant determined by PI WLMC, is in good
agreement with the experimentally evaluated diffusivity in the
interval 240-1000 K.

The computationally less expensive kMC method using
precomputed PI-QTST transition rates calculated by the
WLMC technique, proposed in this paper, opens the way
to studying the quantum dynamics of hydrogen migration
and trapping in the presence of microstructural imperfections
and the calculation of the diffusion coefficients over a wide
temperature range.
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