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We investigate the thermodynamics and kinetics of a hydrogen interstitial in magnetic a-iron, taking
account of the quantum fluctuations of the proton as well as the anharmonicities of lattice vibrations and
hydrogen hopping. We show that the diffusivity of hydrogen in the lattice of bce iron deviates strongly from
an Arrhenius behavior at and below room temperature. We compare a quantum transition state theory to
explicit ring polymer molecular dynamics in the calculation of diffusivity. We then address the trapping of
hydrogen by a vacancy as a prototype lattice defect. By a sequence of steps in a thought experiment, each
involving a thermodynamic integration, we are able to separate out the binding free energy of a proton to a
defect into harmonic and anharmonic, and classical and quantum contributions. We find that about 30% of
a typical binding free energy of hydrogen to a lattice defect in iron is accounted for by finite temperature
effects, and about half of these arise from quantum proton fluctuations. This has huge implications for the
comparison between thermal desorption and permeation experiments and standard electronic structure
theory. The implications are even greater for the interpretation of muon spin resonance experiments.
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The injection, transport, and trapping of subatomic
particles such as protons, deuterons, tritons, muons, or
positrons in solids takes a pivotal role in experimental
characterization techniques such as muon spin rotation
spectroscopy (#SR) [1], positron annihilation experiments
[2,3], and in the design of plasma containment in fusion
power generators [4]. In the case of hydrogen, diffusion and
trapping is also crucial in many technological and materials
science applications, including, for instance, hydrogen
storage and fuel cells [5,6], in particular the deleterious
effects of hydrogen on electrode integrity as a consequence
of the Gorski effect. Diffusion of hydrogen in iron is also of
interest in the final stages of stellar evolution [7]. The
problem of hydrogen embrittlement of iron and steel is
deeply connected with the rate of proton diffusion and the
depth of lattice defect traps that may serve to attenuate the
diffusivity, since it is expected that the crack tip speed may
be limited by the rate at which it can be fed by hydrogen
[8]. The trapping of hydrogen by vacancies is of particular
importance because by the defactant effect [9], the vacancy
is stabilized by trapping, and indeed, the equilibrium
vacancy concentration is known to be enhanced by orders
of magnitude as a result of hydrogen ingress [10], leading
to damage and a compromised structural integrity [11]. The
depth of a microstructural trap—that is, the free energy gain
by transferring a proton from a bulk tetrahedral site into the
trap—is extremely hard to measure, since although an
average trap depth over many defects is accessible through
thermal desorption spectroscopy, it is not possible to
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prepare specimens with just a single defect in order to
distinguish, say, a dislocation trap from a grain boundary or
interface site. This is particularly difficult in the case of the
vacancy. It is possible to calculate trap depths using density
functional theory (DFT), and for example, it has been
shown that the vacancy may trap up to five protons—one
close to each face of the cube surrounding the defect [12].
Unfortunately, standard DFT calculations have ready
access only to the zero temperature total energy. The
quantum nature of the subatomic particle is usually
neglected or accounted for only in terms of a post hoc
zero point energy (ZPE) correction.

Our aim in the present Letter is to unravel various
contributions to the binding free energy to provide both a
framework for the general case and to address the trapping
of H in ferrite (a-Fe) quantitatively. Atomistic modelling of
a hydrogen interstitial in a-iron poses enormous challenges.
First, the magnetism requires an explicit treatment of the
electronic degrees of freedom of the system [12-14];
second, the time scale required to measure the H binding
free energy to defects, as well as the diffusivity in the bulk
lattice, is usually not accessible in ab initio MD simula-
tions. To make the matter even more complex, the small
mass of the proton means that nuclear quantum effects
(NQEs) can play an important role at room temperature and
below. For instance, it has been demonstrated that NQEs
have a significant effect on the thermodynamic stability of
different phases [15-17], as well as on the diffusivity of
protons [18-20].
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In the present Letter, interatomic forces are described
within the self-consistent magnetic tight binding (TB)
approximation [21]. Parameters for the model are given
in Ref. [22]. TB theory is an abstraction of the DFT, and
hence, it has the benefit of capturing the essential physics of
the chemical bond, including self-consistent charge trans-
fer, with forces derived from the Hellmann-Feynman
theorem. However, the method is computationally very
fast because the Hamiltonian is obtained from a fitted look-
up table rather than determined ab initio. The evaluation of
NQE:s is achieved by using the imaginary time path integral
formalism of quantum mechanics. The path integral for-
malism maps the quantum mechanical partition function
onto the partition function of a classical ring-polymer
system [23-26], and as such, the quantum system can
be described by P copies of the physical system with
corresponding particles in adjacent replicas connected by
harmonic springs. When P = 1, the nuclei are purely
classical, and when P — oo, each nucleus in the ring
polymer is fully consistent with the statistics of a quantum
system of distinguishable particles. Methods inspired by
path integral molecular dynamics (PIMD) [27,28] can also
be used to approximate time-dependent observables. We
will use the thermostatted ring polymer molecular dynam-
ics (TRPMD) method [29]. The reader is referred to recent
reviews for a more thorough discussion of PIMD-related
methods [30,31].

In order to compute the quantum configurational dis-
tribution and the diffusivity of H in the a-Fe lattice, we first
performed TRPMD simulations of a system consisting of
16 Fe atoms on a perfect bee iron lattice, and a H interstitial
atom. We performed simulations at 300, 200, 150, 100, and
50 K, increasing the number of beads P for both H and Fe
atoms from 16 to 64 as the temperature was lowered, to
account for the stronger quantum nature of nuclei at lower
temperature. For the sake of comparison, we also per-
formed classical simulations (i.e., only using one bead for
the ring polymer) from 1000 K to 100 K. The diffusion
coefficients of H in a-Fe were computed from the v — 0
limit of the velocity-velocity autocorrelation spectrum of
the H atom. Results for these simulations are reported in
Fig. 1, compared with the results from a previous calcu-
lation using a classical embedded atom potential (EAM) for
interatomic forces [32], as well as experimental measure-
ments [33,34] in the high-temperature regime.

The most prominent observation from Fig. 1 is the stark
difference between the classical and the quantum diffusion
coefficient of H at temperatures equal or lower than room
temperature. Using classical molecular dynamics, the
temperature dependence closely follows Arrhenius behav-
ior as indicated by the dashed red line. Furthermore, the
classical diffusivities predicted by the TB Hamiltonian and
the EAM force field are very similar. However, when
nuclear quantum effects are included, either by using the
path integral formalism or by employing centroid
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FIG. 1. Measured and calculated diffusivity of hydrogen in
a-Fe. Experimental data are drawn as solid green Arrhenius lines
in the temperature range of the measurements [33,34]. Blue
squares are from centroid molecular dynamics simulations by
Kimizuka et al. [32] using an embedded atom classical potential
(EAM) and a Morse potential for hydrogen and iron; MD is
classical molecular dynamics and CMD is centroid MD. The red
curve is the result of a quantum transition state theory (QTST)
calculation by Katzarov and Paxton [35,36]. The open and solid
red squares are our results using the TB Hamiltonian and classical
MD and path integral MD (RPMD), respectively. On the inset, the
distribution of quantum mechanical H atoms in the bcc unit cell
that was computed from RPMD simulations is shown.

molecular dynamics, a strong deviation of the H diffusivity
from Arrhenius behavior below room temperature emerges.
Notice also that the effective activation barriers of diffusion
from different experiments, which determine the slopes of
the green lines in Fig. 1, are different from each other and
from the theoretical predictions, even though the diffusion
coefficients agree well. As suggested in Ref. [37], this is
because Arrhenius behavior was assumed when interpret-
ing experimental measurements. At the low-7 end of the
experimental temperature range (300 K), classical MD
predictions for both TB and EAM are about a factor of two
lower than experiments, while quantum results for both
models are in good agreement. The discrepancy between
classical and quantum dynamics indicates the importance
of NQESs, which become dramatic at lower temperatures
(50 K to 200 K).

While the EAM and TB are in agreement in the classical
MD, there is a large discrepancy at low T between the
EAM-CMD and the TB-RPMD. It is not unusual to see
larger discrepancies between potential energy surfaces
when simulations are performed that include nuclear
quantum fluctuations, because configurations explore
regions that display large levels of anharmonicities, that
are often not included in the fitting of the potential [38,39].
It is possible that while the EAM is fitted to the classical
activation barrier, the EAM does not describe well the
three-dimensional potential energy surface for H moving
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around the Fe lattice. On the other hand, the TB reproduces
this “adiabatic surface” in comparison to density functional
calculations very well, particularly near the saddle
point [40]. This means that, as the beads wander far from
the classical reaction coordinate, the proton samples
regions of the configuration space that the EAM does
not describe well.

From the point of view of the description of quantum
nuclear effects on diffusion, RPMD makes no harmonic or
frozen lattice approximation, and it has been shown to
describe deep-tunneling contributions to rates in a way that
can be related to instanton theory [41]. It therefore provides
an instructive comparison for various transition state theory
approximation schemes [36,37], polaron models [42], and
methods for computing tunneling integrals [43]. The
quantum TST (QTST) uses fixed potential energy surfaces
at the reactant basin and at the saddle point. After that, the
partition functions are calculated, which means that the rate
coefficient can be found without great effort at any temper-
ature [36]. Because the rather artificial construction is made
in Ref. [36] that the potential energy in configuration space
is calculated using a relaxed atomic system with the proton
constrained at the saddle point, the QTST would be
expected to overestimate the diffusivity. On the other hand,
the QTST neglects dynamic phonon effects such as phonon
assisted tunneling in the polaron picture [44]. From that
point of view, one might expect that the TB-RPMD would
predict a greater diffusivity than the TB-QTST. As seen in
Fig. 1, the opposite is the case at temperatures between 100
and 300 K. This observation suggests that in this system,
phonon assisted tunneling is not a large effect, or that other
effects that are included in RPMD and not in QTST and
attenuate proton diffusion, such as dynamical recrossing
and phonon scattering, are dominant. The qualitative
agreement between TB-QTST and TB-RPMD at all tem-
peratures validates the use of the much cheaper QTST to
estimate rate coefficients in the quantum regime.

To elucidate the mechanism of H diffusion in a-Fe, we
show the quantum mechanical density distribution of H at
300 K in a bee unit cell in the inset of Fig. 1. It can be seen
that the equilibrium positions for H in the lattice are
tetrahedral (7') sites. Meanwhile, NQEs broaden the spread
of the distribution of H around the energy minima, which
indicates strong ZPE effects in the H hopping. In other
words, NQEs delocalize H in the reactant state, and
effectively reduce the free energy barrier for H migration
between neighboring 7 sites.

Diffusion in the perfect bcc lattice is a necessary
component of the mechanistic understanding of the mobil-
ity of H in a-Fe. However, the rate-limiting step for
macroscopic diffusion always involves binding to crystal
defects. In order to assess the importance of different terms
in the overall binding free energy between the H atom and
the defect, in the second part of our study we consider the
archetypical example of a vacancy in a-Fe. Computing this

binding energy by sampling of the NVT ensemble is
difficult, as the waiting time for a trapped H to be released
is far beyond the time scale of standard molecular dynam-
ics. Furthermore, a very large simulation would be needed
to bring the H atom sufficiently far from the vacancy to
estimate accurately the binding energy in the dilute limit.
For these reasons, we decided to compute the stability of
a H atom bound to a vacancy, relative to that of a H atom in
a tetrahedral site of the perfect bee lattice, by computing
first the absolute Helmholtz free energies for four systems
separately [45]: (i) a perfect bulk a-Fe system that has
16 atoms (Fey¢), (ii) a system with a vacancy (Fe;s), (iii) a
system with a H interstitial (Fe;4H), and (iv) a system with
a vacancy and a H interstitial (Fe;sH). Based on the
Helmholtz free energy of the four independent systems,
at a certain thermodynamic condition the binding energy of
a proton to a monovacancy can be schematically expressed
as Ay_y = A(Fe;gH) + A(Fes) — A(FejsH) — A(Feyq).
To compute A for the four systems, we used the
thermodynamic integration (TT) method, that uses a series
of simulations of real or artificial systems to compute the
various components of the free energy difference between a
harmonic reference system and the fully anharmonic,
quantum system. To do so efficiently, we have carefully
selected a combination of multiple thermodynamic inte-
gration routes as depicted schematically in Fig. 2. This
combination thus takes into account vibrational entropy,
anharmonicity, and NQEs, and it makes it possible to
disentangle the different contributions. Since a detailed
description of thermodynamic integration routes and sev-
eral tricks of the trade can be found in Ref. [46], here we
only summarize the routes employed in the present Letter.
The first TT route (the green arrow in Fig. 2) goes from the

Harmonic

A=0

FIG. 2. Schematics of thermodynamic integration (TI) routes
used in the free energy evaluations. The green arrow indicates the
switching between the harmonic reference system (4 = 0) and a
real system (4 = 1), the red arrow illustrates TI with respect to
temperature, and the blue arrow shows TI from a classical to a
quantum mechanical system.
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classical harmonic crystal whose free energy A, is analytic,
to the classical physical system at T, = 10 K, At these low
temperatures, the H interstitial atom does not jump between
degenerate trap sites inside the vacancy during the MD
simulations. The second TI route (the red arrow) allows us
to obtain the temperature dependence of the Helmholtz free
energies of each Fe-H system, by running simulations of
the classical physical system under the NVT ensemble
from the low temperature 7, to a higher temperature
T, =300 K. The last TI takes into account NQEs at
T, =300 K. The overall NQEs in free energy can be
evaluated from the integration of the quantum centroid
virial kinetic energy with respect to the fictitious “atomic”
mass u [17,47]. In practice, the integrand was evaluated for
the actual system and for systems with all the atomic
masses scaled 4 and 16 times in PIMD simulations.

In Fig. 3, we plot the predictions from the harmonic
approximations, the classical anharmonic free energy con-
tribution, and the overall free energy of binding taking into
account fully both anharmonicity and NQEs. Our results
show that, at all temperatures, vibrational entropy plays an
important role in the hydrogen-vacancy binding energy of
the classical Fe-H systems as demonstrated by the consid-
erable difference between the 0 K prediction (the black line
in Fig. 3) and the classical harmonic approximation (the
blue line in Fig. 3). This difference in the vibration
frequencies of the vacancy-trapped and the free H in the
T sites also translates to the large zero point energy
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FIG. 3. The temperature dependent H binding free energy to a
monovacancy in a-Fe. The black line is the prediction just using
the minima of the potential energy surface at 0 K, the blue line
shows the harmonic approximation for the classical system, the
green line illustrate the harmonic approximation for the quantum
mechanical system, the red curve indicates the fully anharmonic
result of the classical system, and the yellow dot shows the
quantum and anharmonic result. Statistical uncertainties are
indicated by the error bars. In the inset: the distribution of
quantum mechanical H atoms near a vacancy, as computed by
TRPMD at 300 K. The proton spends no time at the vacant site
itself; this is consistent with DFT calculations [12] and validates
our TB Hamiltonian.

contribution to the overall binding free energy. This is
reflected in the remarkable gap between the harmonic
approximations using the classical Boltzmann distribution
and the quantum mechanical Bose-Einstein distribution
(the blue line and the green line in Fig. 3, respectively).
Finally, anharmonicity, which has been neglected in pre-
vious DFT calculations [12,13,48-51], lowers the binding
energy by about 20 meV even at room temperature. Overall,
the anharmonic quantum mechanical trapping energy of H
in a-Fe at 300 K is predicted to be 0.365 4= 0.005 eV. This
value is lower than observed values of 0.55-0.81 eV for
hydrogen trapping energy in alpha-iron [52,53], and 0.48—
0.63 eV for deuterium at room temperature [54,55]. Part of
the disagreement might be due to a corresponding under-
estimation of the baseline 0 K binding energy obtained by
TB (0.25 eV) in comparison to the equivalent quantity
(uncorrected for ZPE) using gradient corrected local spin
density approximation, 0.45 eV [56]. On the other hand, the
ZPE (0.12 eV) and the potential energy barrier (0.09 eV)
predicted by the TB Hamiltonian are in an excellent
agreement with DFT values [14,56], which can be seen
as a proxy to quantum effects and an indicator of anhar-
monicity, respectively.

The magnitude of quantum and anharmonic effects,
which is on a par with the difference between using
different potential energy surfaces such as TB and DFT,
has implications for the identification of trap sites by
comparison of thermal desorption spectra and total energy
calculations. In this case, ZPE would suffice to obtain a
quantitative prediction of the stability of the bound state,
but of course, this might not be the case for a different
system or at higher temperatures. The TB Hamiltonian used
in our study can be seen as an extremely attractive, indeed
the only, feasible solution to take into account the quantum
mechanical and anharmonic fluctuations.

In conclusion, we have characterized the importance of
NQEs and anharmonicity in two of the microscopic mech-
anisms that underlie the transport of H atoms in a-Fe,
namely H diffusion in the perfect bec lattice, and the binding
of H to a monovacancy. Nuclear quantum effects change the
diffusion coefficient of H in bulk a-Fe by a factor of two at
room temperature, and the quantum effects become over-
whelming at lower temperatures. We then consider the case
of the binding free energy of H to a monovacancy, for which
we considered and disentangled different contributions such
as vibrational entropy, anharmonicity, and NQEs, conclud-
ing that they all play a significant role at room temperature,
and collectively increase the binding energy from 0.25 meV
to 0.36 meV. This latter is closer to the experimental
estimates, and the magnitude of the quantum contribution
is consistent with the experimental observation that deu-
terium is less strongly bound than 'H. Our findings thus
suggest that nuclear quantum effects may have significant
effects on the interactions between H atoms and other
defects, which are essential in achieving a quantitative
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predictive capability of the hydrogen embrittlement process.
In addition, hopping and trapping of other charged sub-
atomic particles in metal lattices is of central importance in
solid state physics, encompassing phenomena such as ySR
and positron annihilation experiments. There is no doubt, in
view of our findings, that quantum fluctuations will take a
greater part in the physics of these processes, and this study
has furnished us with a recipe for how to address these
questions, such as the diffusivity of a positron in a metal or
semiconductor or the trap depth of a muon at a crystal defect.
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