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Hydrogen embrittlement II. Analysis of hydrogen-enhanced decohesion across (111) planes in α-Fe
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This is the second of two papers that present a theoretical analysis of the phenomenon of hydrogen embrittlement
of α-Fe. We make contact between the thermodynamic-kinetic continuum and cohesive zone models and the
quantum-mechanical magnetic tight-binding approximation to interatomic forces. We are able to solve a coupled
set of equations using quantum mechanically obtained atomistic data to follow the decohesion process in time
as traction is applied to a hydrogen charged crystal and decohesion occurs between two (111) crystal planes.
This scheme will be readily extended from transgranular to intergranular failure, although the complexities of
the trapping sites in the cohesive zone associated with a grain boundary will greatly complicate the calculation
of the configurational energy. Hydrogen-enhanced decohesion postulated widely in the field has not yet been
demonstrated experimentally, although our calculations find a reduction in the ideal cohesive strength as a result
of dissolved hydrogen in α-Fe from 30 to 22 GPa. Because of the well-known steep and nonlinear relation
between plastic and ideal elastic work of fracture, this represents a very significant reduction in toughness as a
result of a hydrogen concentration of less than ten atomic parts per million.
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I. INTRODUCTION

There are two most frequently called upon mechanisms
of hydrogen embrittlement in iron and steel. These are
hydrogen-enhanced localized plasticity (HELP), which is the
subject of the first in this series of two papers [1], and
hydrogen-enhanced decohesion (HEDE), which is the subject
of this paper. Decohesion associates hydrogen embrittlement
with a decrease in the atomic bond strength due to hydrogen
segregation at a grain boundary or other interface. The
impurity reduces the cohesive strength of interfaces, which
leads to initiation and propagation of brittle cracks along
these interfaces when the applied stress σapp exceeds the
cohesive strength σcoh. High concentrations of hydrogen and
the decohesion event could occur at a variety of locations
[2]: (i) adsorbed hydrogen at crack tips, (ii) ahead of cracks
where dislocation shielding effects result in a tensile-stress
maximum, (iii) positions of maximum hydrostatic stress, and
(iv) particle-matrix interfaces ahead of cracks. Hydrogen may
be present in the bulk of the material and penetrate into
interfaces upon application of an external load. Unlike the
instance of HELP there has been little direct experimental
evidence for the action of HEDE, although recently cleavage at
subgrain boundaries and transgranular fracture was observed
in a microalloy steel [3]. The present work reinforces this
finding by focusing on the simplified and idealized example of
the hydrogen-enhanced decohesion across two (111) crystal
planes in magnetic bcc α-Fe. The effect of hydrogen is a
large reduction in the ideal cleavage strength σcoh from 30
to 22 GPa. Because the fracture toughness is a very steep
and nonlinear function of the ideal cohesive strength [4], this
means that a reduction by this amount may well amount to a
ductile-to-brittle transition.

The fracture mode associated with HEDE is in contrast
to the catastrophic failure taking place in intrinsically brittle
materials. The crack propagation rate is presumably controlled
by stress-driven diffusion of the hydrogen along the interface
ahead of the crack tip. Without an external load, the hydrogen
interfacial concentration is relatively low and the embrittling

effect is small. A study of this complex phenomenon should
include several aspects, such as a mechanical description of the
crack growth, thermodynamics of interfacial decohesion in the
presence of impurity atoms, and stress-driven diffusion along
an interface. The basic thermodynamic aspects of decohesion
at segregated interfaces were laid down by Rice [5], Hirth
and Rice [6], and later elaborated by Rice and Wang [7].
They analyzed the process of uniform separation along a
plane interface under a uniform tensile stress applied normal
to the interface. Their analysis was focused on two limiting
cases: (i) “slow” separation in which diffusion of the impurity
towards the interface is much faster than the separation and
(ii) “fast” separation in which diffusion is so slow that the
interface remains isolated from the impurity source and some
segregation sites on the fracture surfaces remain empty after
fracture. The first case is the limit of constant chemical
potential μ, that is, equilibrium between the bulk and the
interface; the second is the limit of constant composition and
the resulting surfaces inherit whatever segregants were already
present at the interface before fracture.

When hydrogen atoms are capable of migrating from the
bulk to the crack tip and are trapped in the newly generated
segregation sites, the mobile effect of hydrogen causes
localized decohesion by further increasing the segregation
in the cohesion zone, as illustrated in the cartoon of Fig. 1.
In the stress free, equilibrium state, the cohesive zone is an
atomically thin region—a grain boundary, or in our case,
simply the space between two (111) crystal planes; and the
occupancy of impurity θ is either the equilibrium segregated
excess coverage � in the case of a grain boundary or essentially
zero in the case of a perfect crystal. As traction is applied as
indicated (σ in Fig. 1 is shorthand for σapp) and we allow the
symmetry to break and the two (111) planes to separate, then
trap sites appear which attract hydrogen from the surrounding
bulk. If the hydrogen serves to weaken the atomic bonds
within the cohesive zone, then the process is self-perpetuating,
and is governed by the amount of applied stress (we apply
dead-weight loading) and the rate of diffusion of hydrogen
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FIG. 1. Illustration of the cohesive zone (after Mishin et al. [9]),
see the text for details.

from the bulk. The driving force for hydrogen exchange
between the bulk and the cohesive zone is the difference in
chemical potentials of hydrogen: μ in the cohesive zone and μ∗

b

the chemical potential at the boundary, x = ±δ, of the bulk and
the cohesive zone, Eq. (4), below. The width of the cohesive
zone δ plays the role of a local crack opening displacement if
we translate this model into the problem of a running crack
cohesion zone analysis [8].

A reduction in the intergranular cohesive energy of an
α-Fe � = 3 (111) grain boundary by hydrogen segregation
was studied by first-principles calculations in Refs. [10–12].
Those studies did not investigate the role of hydrogen mobility.
More detailed first-principles studies [13,14] on the effect
of segregated hydrogen on grain boundary decohesion in
α-Fe indicate that mobile hydrogen atoms play a more
significant role on intergranular slow cracking (decohesion)
than immobile hydrogen. To derive the effect of hydrogen
segregation in the cohesive zone under transient conditions,
one needs to know the chemical potential in the cohesive
zone μ = μ(θ ) as a function of the hydrogen occupancy, θ ,
of trap sites in the cohesive zone, which itself is a function
of the separation processing time. The separation trajectory
μ(θ ) is governed by the kinetics of transport of segregant
from the bulk to the pair of separating fracture surfaces.
Thermodynamic and kinetic models for the change in cohesion
induced by segregation were proposed by Wang [15], who
assumed a linear relation between chemical potential and
hydrogen concentration in the cohesive zone; and by Van der
Ven and Ceder [16] who adopted a constant-μ condition. Both
models also show that a mobile segregant reduces the cohesion
more strongly than an immobile segregant does.

To extend our effort to quantify the hydrogen effect
on cohesive energy under various bulk hydrogen contents
and temperatures, it is of importance to incorporate the
hydrogen mobility and segregation energy in the cohesion
zone. Mishin et al. [9] proposed an extension of the analysis
of Hirth and Rice [6] to intermediate situations in between
the limits of constant composition and constant chemical
potential, in which the rates of separation and diffusion are
comparable to one another. In their analysis of the kinetics of
hydrogen supply to the interface, which is controlled by bulk
diffusion, they postulate local thermodynamic equilibrium
conditions at the bulk-interface boundary. In the present
paper, we use the thermodynamic model proposed in Ref. [9]
to study the process of uniform separation under a tensile
stress along a (111) plane in α-Fe with different hydrogen
concentrations in the bulk of the material. In our analysis,
the local thermodynamic equilibrium conditions between the
interface and the environment are upset. We assume that
the hydrogen exchange at the bulk–interface boundary is
controlled by a driving force proportional to the difference
between chemical potentials in the bulk and in the cohesive
zone. This results in a time-dependent interfacial hydrogen
concentration that depends on the relation between the strain
rate and the rate of bulk diffusion. When decohesion occurs, the
hydrogen concentration between the separating atomic planes
could be quite large, sometimes attaining saturation levels. A
difference in hydrogen concentration between the bulk and the
decohering region locally modifies the mechanical response of
the solid, altering the mechanisms and rates of crack growth
from what it would be in the absence of impurities.

The organization of the paper is as follows. In Sec. II, we
describe the continuum decohesion model as first introduced
by Rice, Hirth, and Wang [5–7] and extended by Mishin et al.
[9]. In Sec. III following Van der Ven and Ceder [16], we
describe how the connection is made between the continuum
model and atomistic scale as represented by the cohesion zone.
Section III is separated into three parts: in Sec. III A, we
focus on pure α-Fe, in Sec. III B, we describe how we include
hydrogen in the bulk and in the cohesive zone, and in Sec. III C,
we describe how we calculate the chemical potential in the
cohesive zone. Section IV contains our results and discussion
and we conclude in Sec. V.

II. CONTINUUM DECOHESION MODEL

We follow Mishin et al. [9] and we imagine a perfect crystal
and choose a crystallographic plane across which we will
separate the crystal into two halves. This is a simplification
compared to the original work in which the plane was taken
to be a grain boundary and the crystal a bicrystal [9,16].
The geometry is sketched in Fig. 1, while Fig. 2 shows an
atomic scale view of the cohesive zone. It is the purpose of
the present paper to link these two scales using quantum-
mechanical calculation. In equilibrium, the separation between
the two halves is the equilibrium distance d0 between the
crystallographic planes. As a tensile stress σapp is applied, we
insist the two halves separate by introducing a crack opening
displacement δ. This serves to separate the system into three
regions: two pieces of bulk crystal which are at most elastically
strained and a cohesive zone of thickness δ. In the problem at
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FIG. 2. An atomic scale view of the cohesive zone—snapshot
from one of our simulations described in Sec. IV in which hydrogen
atoms have segregated to the cohesive zone between two separating
(111) crystal planes in magnetic α-Fe. Blue and white spheres
represent iron and hydrogen atoms, respectively.

hand here, the crystal is pure α-Fe containing a nominal bulk
concentration of hydrogen CH usually expressed in atomic
parts per million (appm). Since hydrogen occupies interstitial
tetrahedral sites in α-Fe we may take it that there are Nb such
sites per unit volume of which a fraction θb are occupied.
In the initial, equilibrium, state therefore δ = 0 and there are
Nbθb hydrogen atoms per unit volume. As traction is applied
and the space between the two halves opens up, we expect the
tetrahedral interstices in the cohesive zone to become expanded
and distorted and that these will act as deeper trap sites than
the bulk tetrahedral interstices. Therefore hydrogen will be
attracted by diffusion into the cohesive zone giving rise to an
increased occupancy. The number of trap sites per unit area
is denoted N and the fraction of those that are occupied is
θ . The number of trap sites per unit volume in the cohesive

zone is N/δ and hence there are Nθ/δ hydrogen atoms per
unit volume in the cohesive zone, compared to Nbθb in the
adjoining bulk.

At zero stress, we have θ = θb and μ = μb, where μb and
μ are the chemical potentials of hydrogen in the bulk and in the
cohesive zone, respectively. We may regard the stress as being
a state function of the concentration and size of the cohesive
zone [6,9], which is expressed as a traction curve

σ = σ (θ,δ) (1)

and if we assume a quasiequilibrium state during the applica-
tion of an increasing traction then

μ = μ(θ,δ). (2)

We will see later in Sec. III C by explicit calculation that it is
a good assumption to neglect hydrogen-hydrogen interactions
and use an ideal solution form for the chemical potential in
the cohesive zone. In addition, in view of the very limited bulk
solubility, we may write

μb = μ0 + kT ln

(
θb

1 − θb

)
. (3)

As the stress is applied and δ increases, the equilibrium is
disturbed and hydrogen atoms are exchanged between the bulk
and the cohesive zone. We follow Mishin et al. [9] and assume
that the rate of change of concentration in the cohesive zone is
driven by the chemical potential difference and hence that

∂θ

∂t
= 1

τkT
(μ∗

b − μ). (4)

Here, τ is a characteristic relaxation time, and μ∗
b is the

chemical potential of hydrogen at the interface between the
cohesive zone and the bulk, that is (see Fig. 1),

μ∗
b = μb(θ∗

b ); θ∗
b = θb|x= 1

2 δ. (5)

Now, the rate of increase in number of hydrogen atoms per
unit area of cohesive zone, Nθ , is equal to the sum of the two
fluxes from above and below (Fig. 1),

N
∂θ

∂t
= J− − J+, (6)

and each flux is expressed by Fick’s first law as the product of
the diffusivity D and the concentration gradients at x = ±δ/2,

J+ = −DNb

∂θb

∂x

∣∣∣∣
x= 1

2 δ

. (7)

Combination of (6) and (7) leads to

∂θ

∂t
= 2DNb

N

∂θb

∂x
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x= 1

2 δ

, (8)

and Fick’s second law for hydrogen transport in the bulk reads

∂θb

∂t
= D

∂2θb

∂x2
, (9)

which completes the mathematical formulation of the problem.
The coupled equations (1)–(5), (8), and (9) are solved numer-
ically for different sets of external loads and bulk hydrogen
concentrations. The procedure is as follows.
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(1) The chosen applied stress σapp leads to a crack opening
displacement δ, which is read off the traction curve: one of
the thin lines in Fig. 6 appropriate to the immediate value of
the occupancy, θ , of hydrogen in the cohesive zone. At time
zero, we have θ = θb < 10−5 in view of the very low bulk
concentration CH. At the start of the simulations, we gradually
increase the magnitude of the applied tensile load from zero
until it reaches a constant value.

(2) Due to the increase in separation δ in step 1, there is a
change in the chemical potential according to Eq. (2).

(3) As a result of the change in μ, there will be an exchange
of hydrogen between the bulk and the cohesive zone, induced
by the driving force, μ∗

b − μ, so in this step the occupancy θ is
updated by a numerical integration of Eq. (4) over the interval

t . It is here that the time constant τ plays a role.

(4) This, in turn leads to a change in the gradient boundary
condition at the boundary, x = ±δ/2, between the bulk and
the cohesive zone, which is calculated from Fick’s first law
(8).

(5) The new value furnishes us with a new boundary
condition for the solution of Fick’s second law (9), which
we solve to generate a concentration profile of hydrogen in
the bulk. Typical concentration profiles at T = 300 K are
shown in Fig. 12. We use D = 8.89 × 10−9 m2/s at 300 K
and D = 4.50 × 10−9 m2/s at 200 K [17].

(6) In the last step, in accordance with Eq. (3), the bulk
hydrogen chemical potential is updated.

The steps 1–6 are repeated for successive time steps 
t .
The choice of time constant τ does not affect the cohesive
strength σcoh, which is the maximum stress over the whole
process, but it does affect the time to rupture.

III. COHESIVE ZONE MODEL

In order to proceed, it is necessary to make the connection
between the continuum theory and the interatomic forces that
are responsible for the cohesion (and decohesion) across the
atomic planes, or indeed grain boundaries. As we see in
Sec. III B, it is necessary to make a large number of calculations
of total energy in a wide array of configurations (for example,
Fig. 2) and the density functional theory is generally too
costly for this, especially as in future work we wish to
extend this formalism to grain boundary decohesion. Therefore
we employ the magnetic tight-binding approximation to the
DFT, which was introduced by Paxton, Finnis, and Elsässer
[18,19]. For the calculations, here we use the slightly modified
tight-binding model of Ref. [20].

A. Cohesive zone model in pure bcc Fe

In order to obtain the traction curve (1) we work with excess
quantities: cohesive zone energy per unit area and elongation
[16]. These excess quantities can be applied to situations where
the crack is characterised by an extended region of gradual
decohesion.

For the atomistic calculations, we use “supercells” such as
illustrated in Fig. 2, for which periodic boundary conditions
are applied in all three directions. The excess energy is defined

as [16]

e(σ ) = Etot(σ )

A
− (np − 1)Eel(σ ) (10)

in which Etot is the total energy of the supercell at a stress
σ , A is the area projected onto the cohesive zone, and Eel

is the elastic energy per unit area, per plane of atoms of an
equivalent supercell that is homogeneously stretched at the
same stress [16]. The total number of atomic planes in the
supercell is np and (10) serves to illustrate that the excess
energy in the case of the homogeneously deformed supercell
is just the elastic energy associated with one crystal plane,
so that as the two halves in Fig. 1 are decoupled, (10) is the
excess energy associated with the cohesive zone only. In a
similar way, we can define the excess length [16]

l(σ ) = L(σ ) − (np − 1)Lel(σ ),

where L(σ ) is the length of the supercell at stress σ and Lel

is the separation of the crystal planes in a homogeneously
elongated supercell at the same stress. The crack opening or
width of the cohesive zone is hence

δ(σ ) = l(σ ) − d0.

Using the magnetic tight-binding approximation [20], we
calculate Etot and Eel for a range of lengths of a supercell
containing 16 (111) planes. A vacuum region is introduced
above and below the slab of atoms in order to allow relaxation
of the size of the cohesive zone. We then fit our data to a
universal binding energy curve [21]

e(δ) = e0 − 2γ

(
1 + δ

λ

)
exp

(
− δ

λ

)
(11)

in order to have an analytic expression for convenience. The
traction curve σ (δ) for pure α-Fe is the derivative of (11) with
respect to δ.

We should point out, for clarity, that two locally stable
states of deformation exist as the crystal is elongated perpen-
dicular to the separating planes: (i) the crystal is homoge-
neously and elastically deformed (for small elongations) and
(ii) the elongation is largely concentrated between one pair
of decohering planes (for large elongations). Both states can
be locally stable at intermediate elongations. We calculate
atomistically the energy of the uniformly elongated state and
a decohered state at different elongations. In the calculations,
the atoms within the supercell are relaxed to minimise the
energy of the cell. Periodic boundary conditions are used in
all three directions, which requires introduction of a vacuum
region above and below the slab of atoms in order to provide
correct relaxation of the cohesive zone. To derive the excess
variables, the data from the energy calculations of both states
are substituted into Eq. (10) for the excess energy.

B. Cohesive zone model in the presence of hydrogen

The greatest complication in extending the cohesive zone
model to include the effects of interstitial impurities arises
from the fact that as the cohesive zone widens under traction,
the binding energy for hydrogen at the trap sites becomes
dependent on the crack opening or separation. We may
simplify the situation somewhat by assuming that the number
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of trap sites per unit area does not change, but that these evolve
in a one-to-one manner from the originating bulk tetrahedral
sites that existed between the two separating crystal planes in
equilibrium. We use a lattice model from statistical mechanics
to deduce the occupancies, θ , in the separating cohesive zone
[16,22,23].

First, it is necessary to identify the trap sites and to calculate
their binding energy. The latter quantity is calculated from 32
Fe atom supercells. Having identified trap sites for a given
separation δ, we calculate the total energy, Etot(Fe32Hn), of a
supercell under stress having a number n of equivalent sites
filled. Then the binding energy of these n hydrogen atoms in
the cohesive zone is

Ebind(n) = Etot(Fe32Hn) − Etot(Fe32) − n

2
EH2 − nEdis,

(12)

where Etot(Fe32) is the total energy of the unstrained pure
α-Fe supercell; EH2 = −4.75 eV and Edis = 0.273 eV (in the
tight-binding model [19]) is the dissolution energy [19,24],
which is defined as the energy difference between a hydrogen
atom in a relaxed tetrahedral interstice in α-Fe and one in a
hydrogen molecule. In point of fact, Ebind(n) is independent of
EH2 since the same term appears in the definition of Edis and
cancels out of (12).

The second task is to identify the positions and degeneracy
of the trap sites in the cohesive zone. We find from atomistic
simulations that with increasing separation between two
(111) planes, the original tetrahedral interstices transform
into distorted interstitial sites as shown in Fig. 2. The 12
original and degenerate interstices become three groups with
four degenerate sites in each group. By degeneracy here we
mean that the energy does not change if one hydrogen atom is
interchanged between sites in a group. Furthermore, the sites
in each group are all the same distance from the surface layer of
iron atoms, although this distance is different for each group.
The total energy also changes if a hydrogen atom is moved
from one group to another. The binding energy is greatest
for the groups whose sites are closest to the surface layer,
which means that hydrogen atoms preferentially occupy the
sites nearest to the surface. In this way, as hydrogen atoms
are added into the cohesive zone they first occupy sites in the
group closest to the surface, then sites in the group that is next
nearest and finally they will occupy the third group. Only one
hydrogen atom will occupy each site.

As in the case of pure iron in Sec. III A in order to obtain an
analytic traction curve we fit our results to a binding curve as
in Eq. (11). For example, Fig. 3 shows a fit to our calculations
of the excess energy in the case that half of the twelve sites
are occupied—that is, θ = 1/2. The dependence of the energy
on hydrogen concentration is described using a lattice model
[16,23]. In this model the configuration of hydrogen atoms
in the cohesive zone is specified by occupation variable, si ,
assigned to each trap site i, which is +1 or −1 depending upon
whether or not the site is occupied. A particular configuration
is fully specified by the collection of occupation variables,
s = (s1,s2, . . . ). Each of the parameters in (11) will depend
upon the configuration s and we approximate these as follows:
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FIG. 3. Decohesion curve showing excess binding energy per
unit area of cohesive zone as a function of opening displacement δ.
The data points, calculated using the tight-binding approximation are
fitted to the analytic binding form (11). The occupancy of hydrogen
in the cohesive zone is one half. The zero of binding energy is the
energy of the unstrained pure α-Fe supercell (see Fig. 5).

for any of the three variables, φ = e0,γ or λ, we write [16]

φ(s) =
∑

i

C
φ

0 +
3∑

k=1

⎛
⎝∑

i

C
φ

1.ksi + 1

2

∑
i,j

C
φ

2,ksisj

⎞
⎠. (13)

The first sum is over all tetrahedral sites in the cohesive zone.
In the second and third sums, i ranges over all lattice sites
and j ranges over all neighboring sites to i in each of the
clusters k of energetically equivalent sites. The coefficients,
C

φ

0 , C
φ

1,k , and C
φ

2,k , are independent of configuration in each
cluster. For the hydrogen-iron system, the calculated closest
hydrogen atom-pair interactions are small which justifies a
short ranged lattice model. We obtain values for the coefficients
Cφ in (13) by inversion using fitted parameters of the binding
curves of distinct hydrogen configurations from the atomistic
calculations. The parameters, γ (θ ) and λ(θ ), determined from
the lattice model as functions of the hydrogen concentration
are shown in Fig. 4. Energy versus separation curves for fixed
hydrogen concentrations between decohering (111) planes
(shown for intervals of 0.08 in occupancy) are illustrated in
Fig. 5. The configuration dependence of the stress can also
be parameterised within the cluster expansion (13). The stress
dependence on separation and hydrogen configurations is the
derivative of configurational energy

e(θ,δ) = e0(θ ) − 2γ (θ )

(
1 + δ

λ(θ )

)
exp

(
− δ

λ(θ )

)
(14)

with respect to the separation δ, since [16]

σ =
(

∂e

∂δ

)
T ,θ

. (15)

Figure 6 shows a family of traction curves (1) calculated at
fixed values of the occupancy, θ , of hydrogen in the trap sites
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FIG. 4. Values of the parameters of the binding curve, γ (θ )
and λ(θ ) as determined from the lattice model as functions of the
occupancy θ of the trap sites in the cohesive zone.

in the cohesive zone. These curves are calculated by making
magnetic tight-binding calculations of the relaxed structure
and excess energy of slabs having a fixed value of separation
δ, across the cohesive zone and a fixed occupancy θ . To achieve
a particular value of δ, we apply an elongation to the supercell
which we adjust until we obtain our target δ in the relaxed
structure. Except at very small elongations, the total energy
of two separated slabs is lower than the total energy of the
uniformly, elastically strained slab [16]. Once we have fitted
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FIG. 5. Excess binding energy per unit area of cohesive zone as
a function of opening δ between decohering (111) planes. Curves
are shown at intervals 
θ = 0.08 between θ = 0 and 1 (zero to
full occupancy of the trap sites in the cohesive zone). Note that the
minimum in the θ = 0 curve is at δ = 0 as expected. As θ increases,
this minimum moves to large values of δ as the presence of hydrogen
has the effect of “jacking open” the two (111) planes.
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FIG. 6. Traction curves: stress σ , Eq. (15), as a function of
opening δ. Each of the thin lines is one of a family of traction curves
belonging to a particular value of the occupancy θ of hydrogen in
the trap sites of the cohesive zone. Hence the curve with the largest
peak stress, labeled θ = 0, is the traction curve for pure α-Fe; while
the curve labeled θ = 1 is the traction curve if all the sites in the
cohesive zone are occupied. The curves in between these belong to
values of θ that are incremented in steps of 0.08. The maximum of
each curve may be identified as a critical stress for rupture σcrit. The
thick solid and dotted lines are traction curves at fixed bulk hydrogen
concentration, CH = 1 appm, and fixed applied stress σapp, see Sec. IV
for a discussion of these two curves.

the binding curve (14) as in Fig. 3, we can obtain the stress by
differentiation and plot curves as in Fig. 6.

C. Chemical potential in the cohesive zone

In order to “close the loop” and calculate a traction curve
(1) the final task is to find the chemical potential (2) in the
cohesive zone as a function of the occupancy θ and width δ of
the cohesive zone (and also the bulk hydrogen concentration,
CH). To do this, we require statistical mechanics techniques
which will take appropriate averages over the distinguishable
configurations of hydrogen atoms between the decohering
planes. Once the partition function Z is found then the
chemical potential (2) is

μ(θ,δ) = −kT
∂ ln Z(θ,δ)

∂θ
. (16)

To obtain the partition function, we employ the Wang-Landau
Monte Carlo method [25], which estimates the density of states
g(E) via a random walk in energy space with a probability
proportional to the reciprocal of the density of states. This
is accomplished by modifying the estimated density of states
to produce a “flat” histogram for the energy distribution. At
the beginning of the random walk, the density of states is set
for all energies E to g(E) = 1. Then we begin our random
walk in energy space by flipping randomly the positions of the
hydrogen atoms for different concentrations and separations in
the cohesive zone. If E1 and E2 are energies before and after
flipping, the transition probability from energy level E1 to E2
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is

p(E1 → E2) = min

[
g(E1)

g(E2)
,1

]
.

Each time an energy level E is visited, the corresponding
density of states is updated by multiplying the existing value by
a modification factor f . We keep walking randomly in energy
space and modifying the density of states until the accumulated
histogram H (E) is “flat.” At this stage, the estimated density of
states converges to the true value with an accuracy proportion
to ln f . We then reduce the modification factor to a finer
one and begin the next level random walk with the smaller
modification factor f1. The simulation process stops when the
modification factor is smaller than a predefined final value.

Then the partition function can be derived at each temper-
ature from the density of states via

Z(θ,δ) =
∫

g(e) exp

(
−e(θ,δ)

kT

)
de. (17)

However, use of an analytic expression for the chemical
potential in the cohesive zone as a function of hydrogen con-
centration and separation in the nonlinear system of differential
equations (1)–(5), (8), and (9) is highly advantageous. Such
an analytic expression is furnished by an ideal solution model
[16]

μ(θ,δ) =
(

∂e(θ,δ)

∂θ

)
δ

+ kT ln

(
θ

1 − θ

)
. (18)

Using the configurational energy (14), we have calculated
the chemical potential in the cohesive zone for different
separations δ and hydrogen concentrations θ , using both
Wang-Landau Monte Carlo and the ideal solution model.
The comparison shows excellent coincidence between the two
methods (Fig. 7).

In fact for the hydrogen-iron system, we find that the ideal
solution approximation yields essentially the same results as
more accurate Wang-Landau Monte Carlo simulations. This
indicates weak interaction between hydrogen atoms between
decohering (111) planes and thereby justifies employment
of the less expensive ideal solution model (18) to calculate
chemical potential in the cohesive zone for different hydrogen
concentrations and separations.

We must point out that the combination of the cluster
expansion (13) with the Wang-Landau Monte Carlo approach
and mean-field approximation within each of the groups of
hydrogen atoms does amount to an approximation in our
partition function (17). However, it brings two benefits: (i)
it allows us to keep the number of expensive total energy
calculations to a minimum and (ii) it furnishes us with an
analytic expression for the chemical potential (18).

IV. RESULTS AND DISCUSSION

Now that we have a closed set of equations, with parameters
determined from magnetic tight-binding calculations, solu-
tions can be found for the decohesion process in real time.
We begin with an equilibrium slab of α-Fe and choose an
applied tensile stress σapp and a nominal bulk concentration of
hydrogen, CH. Typical values in industrial practice and in the
laboratory charging of specimens are, respectively, CH = 0.1

0 0.5 1 1.5 2 2.5−5

0

5

10

15

δ (Å)

 μ
/A

 (J
 / 

m
2 )

θ = 0
θ = 1/3
θ = 1/2
θ = 1

FIG. 7. Chemical potential μ divided by area A, projected by
the cohesive zone, vs opening δ for four fixed values of occupancy
θ of hydrogen in the cohesive zone. The solid curves show results
from using the “exact” statistical mechanical Wang-Landau Monte
Carlo and the points show the same quantities obtained from the
ideal solution model (18). For completeness we should point out
that strictly the chemical potential diverges at θ = 1 and 0, therefore
curves thus labeled are in fact calculated at θ = 1 − ε and ε, where
ε = 10−6.

and 10 appm. In the present work, three values are used: 0.1,
1, and 10 appm. We also choose as input a value of the time
constant τ , that enters Eq. (4). We have used three values,
namely, 10−10, 10−5, and 1 s. We also choose a suitable time
step, 
t = 10−5τ .

We illustrate the progress of the steps listed at the end
of Sec. II in Figs. 8 and 9, which show the evolution of the
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1
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σapp = 25 GPa
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σapp = 5 GPa
σapp = 2 GPa
σapp = 1 GPa

FIG. 8. Evolution of the occupancy θ of hydrogen in the cohesive
zone as a function of time, t , for a range of applied stresses σapp. The
bulk hydrogen concentration is CH = 1 appm and the relaxation time
τ is 10−5 s.
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FIG. 9. Evolution of the crack opening, or width δ of the cohesive
zone, Fig. 1, as a function of time t for a range of applied stresses, σapp.
The bulk hydrogen concentration is CH = 1 appm and the relaxation
time τ is 10−5 s. Note that for applied stresses of 20 GPa and lower,
δ ceases to increase at some time and therefore the crystal does not
rupture. In this way see that the cohesive strength of the (111) planes
in otherwise perfect α-Fe, in the presence of dissolved hydrogen is
greater than 20 GPa.

occupancy by hydrogen θ and the width δ of the cohesive zone
as a function of time during the process of following the above
steps 1–6 (Sec. II) for a chosen bulk hydrogen concentration
of CH = 1 appm and relaxation time, τ = 10−5 s. We observe
that as long as the applied stress σapp is greater than 1 GPa
then the stress generates a driving force that increases the
concentration of hydrogen in the cohesive zone, which in turn
leads to an increased crack opening, or separation, which in
its turn leads to a reduction in the critical stress σcrit, since as
δ increases we move onto traction curves with increasingly
smaller maxima (see Fig. 6).

While the integration is quick and has the physical
transparency of following the decohesion process in time,
there is also the following graphical method to find whether
decohesion will occur at a given applied stress. (i) Using the
family of traction curves of Fig. 6 find that value of θ (call
it θc) whose curve shows a maximum at the chosen σapp.
(ii) Compare the corresponding cohesive zone chemical
potential μ with the bulk μb associated with the hydrogen
concentration CH and temperature T . If μb > μ then the in-
terface will decohere. This is because under this circumstance
μ � μ∗

b � μb at all times. Conversely, if θc cannot be attained
at the chosen T and σapp then as t → ∞ the interface reaches
an equilibrium in which μ = μ∗

b = μb, the equilibrium θ is
smaller than θc and decohesion is avoided.

Our procedure (steps 1–6 of Sec. II) allows us to establish
a criterion for failure, namely that once the steady state has
been reached in the steps 1–6 (Sec. II), we can identify the
current critical stress σcrit with the cohesive strength σcoh, and
if σapp > σcoh, then the cohesive strength is exceeded and the
crystal will rupture across the cohesive zone. We find that
in the range σapp = 5–20 GPa the stress is sufficient to fully
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FIG. 10. Evolution of hydrogen occupancy θ of the cohesive
zone as a function of time during the decohesion across two (111)
crystal planes in α-Fe. Applied stress, σapp = 22 GPa, bulk hydrogen
concentration, CH = 1 appm.

saturate the cohesive zone with hydrogen, θ = 1; only applied
stress greater than 20 GPa will exceed the cohesive strength
and lead to rupture. The time to rupture depends on the driving
force for hydrogen exchange with the bulk and increases with
increasing applied stress, σapp. We illustrate this in Figs. 10 and
11 which show the occupancy θ and width δ of the cohesive
zone as functions of time. The results we present here are from
calculations at a temperature T = 300 K. We find that while a
change of temperature to 200 K leads to a change in the time
to rupture, it does not affect the cohesive strength. We also
find that our results are little affected by the bulk hydrogen
concentration in the range CH = 0.1–10 appm.
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FIG. 11. Evolution of width δ of the cohesive zone as a function
of time during the decohesion across two (111) crystal planes in
α-Fe. Applied stress, σapp = 22 GPa, bulk hydrogen concentration,
CH = 1 appm.
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FIG. 12. Hydrogen concentration profiles at the point of rupture
or saturation at T = 300 K in the bulk for different values of the
applied stress σapp. In this case, the bulk hydrogen concentration is
CH = 1 appm so that is the value at large distances from the cohesive
zone. The distance given is the distance from the boundary, x = ±δ/2.

Figure 12 shows diffusion profiles between the interface of
the cohesive zone with the bulk at x = ±δ/2 (Fig. 1) at the
point of rupture in the case of applied stresses in the interval
22–30 GPa, and at the point of saturation of the cohesive
zone for σapp < 22 GPa. The effect of hydrogen diffusion
into the cohesive zone is to lead to a region in which the
hydrogen concentration in the bulk next to the cohesive zone
is depleted. The width of this region increases as the applied
load decreases.

Van der Van and Ceder [16] discovered in a first principles
study of hydrogen affecting the decohesion of (111) planes in
aluminum, that there is a Van der Waals phase transition from
a dilute cohesive zone (DCZ) to a saturated cohesive zone
(SCZ) as the decohesion process proceeds. We see the same
phenomenon in the traction curve drawn as a thick solid line
in Fig. 6. This line traces the traction curve for decohesion
of bulk (111) planes in α-Fe at an applied stress, σapp = 22
GPa and with a bulk concentration CH = 1 appm, at 300 K.
Initially as the width of the cohesive zone δ increases from
zero, the traction curve follows that of pure α-Fe since the
occupancy θ is initially close to zero. However, there comes
an abrupt, first-order transition to an occupancy close to θ = 1
as indicated by the change to zero slope in the traction curve
at δ ≈ 0.2 Å. Then at δ ≈ 1.3 Å, the traction curve follows a
constant-θ stress-separation curve and since the applied stress,
σapp, is in this case greater than the critical stress σcrit, at the
maximum of the constant-θ stress-separation curve, the width
of the zone continues to increase and the crystal ruptures. On
the other hand, if σapp < σcoh as indicated by the dotted line
for σapp = 5 GPa, again initially the traction curve follows that
of pure α-Fe, but while there is again the observed transition
from DCZ to SCZ, the crystal does not rupture and the system
goes over into an equilibrium state with δ ≈ 0.9 Å and θ ≈ 1.

The results of this work indicate that very high elastic
stresses, in excess of σapp = 20 GPa, are required to produce

sufficiently high concentrations of hydrogen in interstitial
lattice sites ahead of crack tips and to exceed the critical stress,
σcrit (Fig. 6), that results in decohesion (Fig. 9). Whether such
stresses can be achieved is debatable. Several approximations
due to computational limitations have been made in our
investigation of the role of hydrogen during decohesion. One
is that we have focused on uniaxial loading. We have neglected
possible large shear stresses along the cohesive zone generated
by the triaxial state of stress at a crack tip. We do not
study plasticity and cleavage phenomena simultaneously so the
results of this paper are related only to cleavage. Crack growth
also involves nucleation and motion of dislocations along with
bond breaking through cleavage. Some dislocation activity
may accompany decohesion, and may locally affect stresses at
decohesion sites. Dislocation shielding effects ahead of the
crack tip can also result in higher tensile stresses. In this
paper, we have considered localised decohesion caused by
the mobile effect of hydrogen migrating from the bulk to the
crack tip. Other possible modes of mass transport involve the
crack surfaces behind the crack tip, which serve as an impurity
reservoir, or possible hydrogen transport with dislocations that
are attracted to the crack tip. We have confined ourselves
here to transgranular decohesion ahead of a crack tip. The
same approach can be used for studying intergranular fracture.
However, the computational costs for a similar study of inter-
granular decohesion is significantly higher due to the require-
ment of very large supercells to accommodate an explicit grain
boundary. Moreover, the structure of the grain boundary admits
a much greater complexity of trap sites, which complicates
greatly the lattice model (13) for the excess energy.

V. CONCLUSIONS

We have followed previous authors [6,9,16] in describing
the process of hydrogen induced decohesion across (111)
planes in magnetic α-Fe. The picture is this. At zero applied
stress, the hydrogen concentration in tetrahedral sites in
between the two (111) planes is essentially zero due to the
very low solubility leading to just parts per million levels of
hydrogen in the bulk. If a constant traction is applied leading
to an applied stress σapp and if the two planes are allowed to
decohere by breaking the symmetry of the system, then as they
separate the tetrahedral interstices are distorted and enlarged
so that they become deeper traps than the bulk sites. This leads
to a flux of hydrogen into the cohesive zone, resulting in a
reduction in the excess free binding energy of the interface.
This in turn leads to an increase in the width δ of the cohesive
zone as shown by the family of binding energy curves in Fig. 5.
As this process continues, two things may happen; the system
may reach an equilibrium state of cohesive zone width δ and
hydrogen occupancy θ (which may or may not be saturated,
depending on σapp, Fig. 8) or the width will continue to increase
until the crystal ruptures revealing two new surfaces having an
equilibrium segregation of hydrogen. Rupture is facilitated
by the phase transition from a dilute to a saturated cohesive
zone as shown in Fig. 6 and as predicted by Van der Ven and
Ceder [16].

Our principal conclusion is that the cohesive strength of
α-Fe across (111) planes is reduced from 33 GPa (Fig. 6)
to 22 GPa due to the presence of dissolved hydrogen in an
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otherwise perfect crystal. This value is unaffected by a change
in temperature from 300 to 200 K, and is is independent of the
bulk hydrogen concentration in the range CH = 0.1–10 appm.

The approach that we outline here is clearly applicable
to both intergranular decohesion in α-Fe and interfacial
decohesion, for example at the interface with a carbide particle
in steel. The interatomic forces in either case are amenable
to the tight-binding approximation, so while the problem is
greatly complicated by the configuration of trap sites in the
cohesive zone, there are no difficulties in principle to extending
to microstructures in steels. Such a program of work will

provide essential input to continuum finite element models
[26], which use “cohesive elements” to represent decohering
interfaces and for which the physical basis is still in its infancy.
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